numform

Build Status Coverage Status

numform contains tools to assist in the formatting of numbers and plots for publication. Tools include the removal of leading zeros, standardization of number of digits, addition of affixes, and a p-value formatter. These tools combine the functionality of several ‘base’ functions such as paste(), format(), and sprintf() into specific use case functions that are named in a way that is consistent with usage, making their names easy to remember and easy to deploy.

Installation

To download the development version of numform:

Download the zip ball or tar ball, decompress and run R CMD INSTALL on it, or use the pacman package to install the development version:

if (!require("pacman")) install.packages("pacman")
pacman::p_load_current_gh("trinker/numform")
pacman::p_load(tidyverse, gridExtra)

Table of Contents

Contact

You are welcome to:
- submit suggestions and bug-reports at: https://github.com/trinker/numform/issues
- send a pull request on: https://github.com/trinker/numform/
- compose a friendly e-mail to: tyler.rinker@gmail.com

Available Functions

Below is a table of available numform functions. Note that f_ is read as “format” whereas fv_ is read as “format vector”. The former formats individual values in the vector while the latter uses the vector to compute a calculation on each of the values and then formats them. Additionally, all numform f_ functions have a closure, function retuning, version that is prefixed with an additional f (read “format function”). For example, f_num has ff_num which has the same arguments but returns a function instead. This is useful for passing in to ggplot2 scale_x/y_type functions (see Plotting for usage).

alignment f_byte f_latitude f_peta f_weekday_abbreviation
as_factor f_celcius f_list f_pp f_weekday_name
collapse f_comma f_list_amp f_prefix f_wrap
constant_months f_data f_logical f_prop2percent f_year
constant_months_abbreviation f_data_abbreviation f_longitude f_pval f_yotta
constant_quarters f_date f_mean_sd f_quarter f_zetta
constant_weekdays f_degree f_mega f_replace fv_num_percent
constant_weekdays_abbreviation f_denom f_mills f_response fv_percent
f_12_hour f_dollar f_month f_sign fv_percent_diff
f_abbreviation f_exa f_month_abbreviation f_state fv_percent_diff_fixed_relative
f_affirm f_fahrenheit f_month_name f_suffix fv_percent_lead
f_affix f_giga f_num f_tera fv_percent_lead_fixed_relative
f_bills f_interval f_num_percent f_text_bar fv_runs
f_bin f_interval_right f_ordinal f_thous glue
f_bin_right f_interval_text f_pad_zero f_title highlight_cells
f_bin_text f_interval_text_right f_parenthesis f_trills
f_bin_text_right f_kilo f_percent f_weekday

Available Formatting Functions

Demonstration

Load Packages

if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/numform")
pacman::p_load(dplyr)

Numbers

f_num(c(0.0, 0, .2, -00.02, 1.122222, pi, "A"))

## [1] ".0"  ".0"  ".2"  "-.0" "1.1" "3.1" NA

Abbreviated Numbers

f_thous(1234)

## [1] "1K"

f_thous(12345)

## [1] "12K"

f_thous(123456)

## [1] "123K"

f_mills(1234567)

## [1] "1M"

f_mills(12345678)

## [1] "12M"

f_mills(123456789)

## [1] "123M"

f_bills(1234567891)

## [1] "1B"

f_bills(12345678912)

## [1] "12B"

f_bills(123456789123)

## [1] "123B"

…or auto-detect:

f_denom(1234)

## [1] "1K"

f_denom(12345)

## [1] "12K"

f_denom(123456)

## [1] "123K"

f_denom(1234567)

## [1] "1M"

f_denom(12345678)

## [1] "12M"

f_denom(123456789)

## [1] "123M"

f_denom(1234567891)

## [1] "1B"

f_denom(12345678912)

## [1] "12B"

f_denom(123456789123)

## [1] "123B"

Commas

f_comma(c(1234.12345, 1234567890, .000034034, 123000000000, -1234567))

## [1] "1,234.123"       "1,234,567,890"   ".000034034"      "123,000,000,000"
## [5] "-1,234,567"

Percents

f_percent(c(30, 33.45, .1), digits = 1)

## [1] "30.0%" "33.5%" ".1%"

f_percent(c(0.0, 0, .2, -00.02, 1.122222, pi))

## [1] ".0%"  ".0%"  ".2%"  "-.0%" "1.1%" "3.1%"

f_prop2percent(c(.30, 1, 1.01, .33, .222, .01))

## [1] "30.0%"  "100.0%" "101.0%" "33.0%"  "22.2%"  "1.0%"

f_prop2percent(c(.30, 1, 1.01, .33, .222, .01), digits = 0)

## [1] "30%"  "100%" "101%" "33%"  "22%"  "1%"

f_pp(c(.30, 1, 1.01, .33, .222, .01)) # same as f_prop2percent(digits = 0)

## [1] "30%"  "100%" "101%" "33%"  "22%"  "1%"

Dollars

f_dollar(c(0, 30, 33.45, .1))

## [1] "$0.00"  "$30.00" "$33.45" "$0.10"

f_dollar(c(0.0, 0, .2, -00.02, 1122222, pi)) %>% 
    f_comma()

## [1] "$0.00"         "$0.00"         "$0.20"         "$-.02"        
## [5] "$1,122,222.00" "$3.14"

Sometimes one wants to lop off digits of money in order to see the important digits, the real story. The f_denom family of functions can do job.

f_denom(c(12345267, 98765433, 658493021), prefix = '$')

## [1] "$ 12M" "$ 99M" "$658M"

f_denom(c(12345267, 98765433, 658493021), relative = 1, prefix = '$')

## [1] "$ 12.3M" "$ 98.8M" "$658.5M"

Tables

Notice the use of the alignment function to detect the column alignment.

pacman::p_load(dplyr, pander)

set.seed(10)
dat <- data_frame(
    Team = rep(c("West Coast", "East Coast"), each = 4),
    Year = rep(2012:2015, 2),
    YearStart = round(rnorm(8, 2e6, 1e6) + sample(1:10/100, 8, TRUE), 2),
    Won = round(rnorm(8, 4e5, 2e5) + sample(1:10/100, 8, TRUE), 2),
    Lost = round(rnorm(8, 4.4e5, 2e5) + sample(1:10/100, 8, TRUE), 2),
    WinLossRate = Won/Lost,
    PropWon = Won/YearStart,
    PropLost = Lost/YearStart
)


dat %>%
    group_by(Team) %>%
    mutate(
        `%&Delta;WinLoss` = fv_percent_diff(WinLossRate, 0),
        `&Delta;WinLoss` = f_sign(Won - Lost, '<b>+</b>', '<b>&ndash;</b>')
        
    ) %>%
    ungroup() %>%
    mutate_at(vars(Won:Lost), .funs = ff_denom(relative = -1, prefix = '$')) %>%
    mutate_at(vars(PropWon, PropLost), .funs = ff_prop2percent(digits = 0)) %>%
    mutate(
        YearStart = f_denom(YearStart, 1, prefix = '$'),
        Team = fv_runs(Team),
        WinLossRate = f_num(WinLossRate, 1)
    ) %>%
    data.frame(stringsAsFactors = FALSE, check.names = FALSE) %>%
    pander::pander(split.tables = Inf, justify = alignment(.), style = 'simple')
Team Year YearStart Won Lost WinLossRate PropWon PropLost %ΔWinLoss ΔWinLoss
West Coast 2012 $2.0M $350K $190K 1.9 17% 9% 0% +
2013 $1.8M $600K 370K</td><tdalign="right">1.6</td><tdalign="right">33align="right">20align="right">13align="right"><b>+</b></td></tr><trclass="odd"><tdalign="left"></td><tdalign="right">2014</td><tdalign="right"> .6M $550K $300K 1.8 87% 48% 11% +
2015 $1.4M $420K $270K 1.6 30% 19% -13% +
East Coast 2012 $2.3M $210K $420K .5 9% 18% 0%
2013 $2.4M $360K 390K</td><tdalign="right">.9</td><tdalign="right">15align="right">16align="right">86align="right"><b></b></td></tr><trclass="odd"><tdalign="left"></td><tdalign="right">2014</td><tdalign="right"> .8M 590K</td><tdalign="right"> 70K 8.4 74% 9% 811% +
2015 $1.6M $500K $420K 1.2 30% 26% -86% +
pacman::p_load(dplyr, pander)

data_frame(
    Event = c('freezing water', 'room temp', 'body temp', 'steak\'s done', 'hamburger\'s done', 'boiling water', 'sun surface', 'lighting'),
    F = c(32, 70, 98.6, 145, 160, 212, 9941, 50000)
) %>%
    mutate(
        Event = f_title(Event),
        C = (F - 32) * (5/9)
    ) %>%
    mutate(
        F = f_degree(F, measure = 'F', type = 'string'),
        C = f_degree(C, measure = 'C', type = 'string', zero = '0.0')
    )  %>%
    data.frame(stringsAsFactors = FALSE, check.names = FALSE) %>%
    pander::pander(split.tables = Inf, justify = alignment(.), style = 'simple')
Event F C
Freezing Water 32.0°F 0.0°C
Room Temp 70.0°F 21.1°C
Body Temp 98.6°F 37.0°C
Steak’s Done 145.0°F 62.8°C
Hamburger’s Done 160.0°F 71.1°C
Boiling Water 212.0°F 100.0°C
Sun Surface 9941.0°F 5505.0°C
Lighting 50000.0°F 27760.0°C
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse)

set.seed(11)
data_frame(
    date = sample(seq(as.Date("1990/1/1"), by = "day", length.out = 2e4), 12)
) %>%
    mutate(
        year_4 = f_year(date, 4),
        year_2 = f_year(date, 2),
        quarter = f_quarter(date),
        month_name = f_month_name(date) %>%
            numform::as_factor(),
        month_abbreviation = f_month_abbreviation(date) %>%
            numform::as_factor(),
        month_short = f_month(date),
        weekday_name = f_weekday_name(date),
        weekday_abbreviation = f_weekday_abbreviation(date),
       weekday_short = f_weekday(date),
        weekday_short_distinct = f_weekday(date, distinct = TRUE)
    ) %>%
    data.frame(stringsAsFactors = FALSE, check.names = FALSE) %>%
    pander::pander(split.tables = Inf, justify = alignment(.), style = 'simple')
date year_4 year_2 quarter month_name month_abbreviation month_short weekday_name weekday_abbreviation weekday_short weekday_short_distinct
2005-03-07 2005 05 Q1 March Mar M Monday Mon M M
1990-01-11 1990 90 Q1 January Jan J Thursday Thu T Th
2017-12-16 2017 17 Q4 December Dec D Saturday Sat S S
1990-10-08 1990 90 Q4 October Oct O Monday Mon M M
1993-07-17 1993 93 Q3 July Jul J Saturday Sat S S
2042-04-10 2042 42 Q2 April Apr A Thursday Thu T Th
1994-09-26 1994 94 Q3 September Sep S Monday Mon M M
2005-11-15 2005 05 Q4 November Nov N Tuesday Tue T T
2038-03-16 2038 38 Q1 March Mar M Tuesday Tue T T
1996-09-29 1996 96 Q3 September Sep S Sunday Sun S Su
1999-08-02 1999 99 Q3 August Aug A Monday Mon M M
2014-02-14 2014 14 Q1 February Feb F Friday Fri F F
mtcars %>%
    count(cyl, gear) %>%
    group_by(cyl) %>%
    mutate(
        p = numform::f_pp(n/sum(n))
    ) %>%
    ungroup() %>%
    mutate(
        cyl = numform::fv_runs(cyl),
        ` ` = f_text_bar(n)  ## Overall
    ) %>%
    as.data.frame()

  cyl gear  n   p          
1   4    3  1  9% _        
2        4  8 73% ______   
3        5  2 18% __       
4   6    3  2 29% __       
5        4  4 57% ___      
6        5  1 14% _        
7   8    3 12 86% _________
8        5  2 14% __       

Plotting

library(tidyverse); library(viridis)

set.seed(10)
data_frame(
    revenue = rnorm(10000, 500000, 50000),
    date = sample(seq(as.Date('1999/01/01'), as.Date('2000/01/01'), by="day"), 10000, TRUE),
    site = sample(paste("Site", 1:5), 10000, TRUE)
) %>%
    mutate(
        dollar = f_comma(f_dollar(revenue, digits = -3)),
        thous = f_denom(revenue),
        thous_dollars = f_denom(revenue, prefix = '$'),
        abb_month = f_month(date),
        abb_week = numform::as_factor(f_weekday(date, distinct = TRUE))
    ) %>%
    group_by(site, abb_week) %>%
    mutate(revenue = {if(sample(0:1, 1) == 0) `-` else `+`}(revenue, sample(1e2:1e5, 1))) %>%
    ungroup() %T>%
    print() %>%
    ggplot(aes(abb_week, revenue)) +
        geom_jitter(width = .2, height = 0, alpha = .2, aes(color = revenue)) +
        scale_y_continuous(label = ff_denom(prefix = '$'))+
        facet_wrap(~site) +
        theme_bw() +
        scale_color_viridis() +
        theme(
            strip.text.x = element_text(hjust = 0, color = 'grey45'),
            strip.background = element_rect(fill = NA, color = NA),
            panel.border = element_rect(fill = NA, color = 'grey75'),
            panel.grid = element_line(linetype = 'dotted'),
            axis.ticks = element_line(color = 'grey55'),
            axis.text = element_text(color = 'grey55'),
            axis.title.x = element_text(color = 'grey55', margin = margin(t = 10)),            
            axis.title.y = element_text(color = 'grey55', angle = 0, margin = margin(r = 10)),
            legend.position = 'none'
        ) +
        labs(
            x = 'Day of Week',
            y = 'Revenue',
            title = 'Site Revenue by Day of Week',
            subtitle = f_wrap(c(
                'This faceted dot plot shows the distribution of revenues within sites',
                'across days of the week.  Notice the consistently increasing revenues for',
                'Site 2 across the week.'
            ), width = 85, collapse = TRUE)
        )

## # A tibble: 10,000 x 8
##    revenue date       site   dollar  thous thous_dollars abb_month abb_week
##      <dbl> <date>     <chr>  <chr>   <chr> <chr>         <chr>     <fct>   
##  1 449648. 1999-11-29 Site 1 $501,0~ 501K  $501K         N         M       
##  2 560514. 1999-07-07 Site 4 $491,0~ 491K  $491K         J         W       
##  3 438891. 1999-08-06 Site 2 $431,0~ 431K  $431K         A         F       
##  4 528543. 1999-05-04 Site 3 $470,0~ 470K  $470K         M         T       
##  5 462758. 1999-07-08 Site 4 $515,0~ 515K  $515K         J         Th      
##  6 553879. 1999-07-22 Site 2 $519,0~ 519K  $519K         J         Th      
##  7 473985. 1999-05-20 Site 2 $440,0~ 440K  $440K         M         Th      
##  8 533825. 1999-05-28 Site 5 $482,0~ 482K  $482K         M         F       
##  9 426124. 1999-01-15 Site 2 $419,0~ 419K  $419K         J         F       
## 10 406613. 1999-08-19 Site 3 $487,0~ 487K  $487K         A         Th      
## # ... with 9,990 more rows

library(tidyverse); library(viridis)

set.seed(10)
dat <- data_frame(
    revenue = rnorm(144, 500000, 10000),
    date = seq(as.Date('2005/01/01'), as.Date('2016/12/01'), by="month")
) %>%
    mutate(
        quarter = f_quarter(date),
        year = f_year(date, 4)
    ) %>%
    group_by(year, quarter) %>%
    summarize(revenue = sum(revenue)) %>%
    ungroup() %>%
    mutate(quarter = as.integer(gsub('Q', '', quarter)))

year_average <- dat %>%
    group_by(year) %>%
    summarize(revenue = mean(revenue)) %>%
    mutate(x1 = .8, x2 = 4.2)

dat %>%
    ggplot(aes(quarter, revenue, group = year)) +
        geom_segment(
            linetype = 'dashed', 
            data = year_average, color = 'grey70', size = 1,
            aes(x = x1, y = revenue, xend = x2, yend = revenue)
        ) +
        geom_line(size = .85, color = '#009ACD') +
        geom_point(size = 1.5, color = '#009ACD') +
        facet_wrap(~year, nrow = 2)  +
        scale_y_continuous(label = ff_denom(relative = 2)) +
        scale_x_continuous(breaks = 1:4, label = f_quarter) +
        theme_bw() +
        theme(
            strip.text.x = element_text(hjust = 0, color = 'grey45'),
            strip.background = element_rect(fill = NA, color = NA),
            panel.border = element_rect(fill = NA, color = 'grey75'),
            panel.grid.minor = element_blank(),
            panel.grid.major = element_line(linetype = 'dotted'),
            axis.ticks = element_line(color = 'grey55'),
            axis.text = element_text(color = 'grey55'),
            axis.title.x = element_text(color = 'grey55', margin = margin(t = 10)),            
            axis.title.y = element_text(color = 'grey55', angle = 0, margin = margin(r = 10)),
            legend.position = 'none'
        ) +
        labs(
            x = 'Quarter',
            y = 'Revenue ($)',
            title = 'Quarterly Revenue Across Years',
            subtitle = f_wrap(c(
                'This faceted line plot shows the change in quarterly revenue across', 
                'years.'
            ), width = 85, collapse = TRUE)
        )

library(tidyverse); library(gridExtra)

set.seed(10)
dat <- data_frame(
    level = c("not_involved", "somewhat_involved_single_group",
        "somewhat_involved_multiple_groups", "very_involved_one_group",
        "very_involved_multiple_groups"
    ),
    n = sample(1:10, length(level))
) %>%
    mutate(
        level = factor(level, levels = unique(level)),
        `%` = n/sum(n)
    )

gridExtra::grid.arrange(

    gridExtra::arrangeGrob(

        dat %>%
            ggplot(aes(level, `%`)) +
                geom_col() +
                labs(title = 'Very Sad', y = NULL) +
                theme(
                    axis.text = element_text(size = 7),
                    title = element_text(size = 9)
                ),

       dat %>%
            ggplot(aes(level, `%`)) +
                geom_col() +
                scale_x_discrete(labels = function(x) f_replace(x, '_', '\n')) +
                scale_y_continuous(labels = ff_prop2percent(digits = 0))  +
                labs(title = 'Underscore Split (Readable)', y = NULL) +
                theme(
                    axis.text = element_text(size = 7),
                    title = element_text(size = 9)
                ),

        ncol = 2

    ),
    gridExtra::arrangeGrob(

       dat %>%
            ggplot(aes(level, `%`)) +
                geom_col() +
                scale_x_discrete(labels = function(x) f_title(f_replace(x))) +
                scale_y_continuous(labels = ff_prop2percent(digits = 0))  +
                labs(title = 'Underscore Replaced & Title (Capitalized Sadness)', y = NULL) +
                theme(
                    axis.text = element_text(size = 7),
                    title = element_text(size = 9)
                ),

        dat %>%
            ggplot(aes(level, `%`)) +
                geom_col() +
                scale_x_discrete(labels = function(x) f_wrap(f_title(f_replace(x)))) +
                scale_y_continuous(labels = ff_prop2percent(digits = 0))  +
                labs(title = 'Underscore Replaced, Title, & Wrapped (Happy)', y = NULL) +
                theme(
                    axis.text = element_text(size = 7),
                    title = element_text(size = 9)
                ),

        ncol = 2

    ), ncol = 1

)

set.seed(10)
dat <- data_frame(
    state = sample(state.name, 10),
    value = sample(10:20, 10) ^ (7),
    cols = sample(colors()[1:150], 10)
) %>%
    arrange(desc(value)) %>%
    mutate(state = factor(state, levels = unique(state)))

dat %>%
    ggplot(aes(state, value, fill = cols)) +
        geom_col() +
        scale_x_discrete(labels = f_state) +
        scale_fill_identity() +
        scale_y_continuous(labels = ff_denom(prefix = '$'), expand = c(0, 0), 
            limits = c(0, max(dat$value) * 1.05)
        ) +
        theme_minimal() +
        theme(
            panel.grid.major.x = element_blank(),
            axis.title.y = element_text(angle = 0)
        ) +
        labs(x = 'State', y = 'Cash\nFlow', 
            title = f_title("look at how professional i look"),
            subtitle = 'Subtitles: For that extra professional look.'
        )

library(tidyverse); library(viridis)

data_frame(
    Event = c('freezing water', 'room temp', 'body temp', 'steak\'s done', 'hamburger\'s done', 'boiling water'),
    F = c(32, 70, 98.6, 145, 160, 212)
) %>%
    mutate(
        C = (F - 32) * (5/9),
        Event = f_title(Event),
        Event = factor(Event, levels = unique(Event))
    ) %>%
    ggplot(aes(Event, F, fill = F)) +
        geom_col() +
        geom_text(aes(y = F + 4, label = f_fahrenheit(F, digits = 1, type = 'text')), parse = TRUE, color = 'grey60') +
        scale_y_continuous(
            labels = f_fahrenheit, limits = c(0, 220), expand = c(0, 0),
            sec.axis = sec_axis(trans = ~(. - 32) * (5/9), labels = f_celcius, name = f_celcius(prefix = 'Temperature ', type = 'title'))
        ) +
        scale_x_discrete(labels = ff_replace(pattern = ' ', replacement = '\n')) +
        scale_fill_viridis(option =  "magma", labels = f_fahrenheit, name = NULL) +
        theme_bw() +
        labs(
            y = f_fahrenheit(prefix = 'Temperature ', type = 'title'),
            title = f_fahrenheit(prefix = 'Temperature of Common Events ', type = 'title')
        ) +
        theme(
            axis.ticks.x = element_blank(),
            panel.border = element_rect(fill = NA, color = 'grey80'),
            panel.grid.minor.x = element_blank(),
            panel.grid.major.x = element_blank()
        )

library(tidyverse); library(maps)

world <- map_data(map="world")

ggplot(world, aes(map_id = region, x = long, y = lat)) +
    geom_map(map = world, aes(map_id = region), fill = "grey40", colour = "grey70", size = 0.25) +
    scale_y_continuous(labels = f_latitude) +
    scale_x_continuous(labels = f_longitude)

mtcars %>%
    mutate(mpg2 = cut(mpg, 10, right = FALSE)) %>%
    ggplot(aes(mpg2)) +
        geom_bar(fill = '#33A1DE') +
        scale_x_discrete(labels = function(x) f_wrap(f_bin_text_right(x, l = 'up to'), width = 8)) +
        scale_y_continuous(breaks = seq(0, 14, by = 2), limits = c(0, 7)) +
        theme_minimal() +
        theme(
            panel.grid.major.x = element_blank(),
            axis.text.x = element_text(size = 14, margin = margin(t = -12)),
            axis.text.y = element_text(size = 14),
            plot.title = element_text(hjust = .5)
        ) +
        labs(title = 'Histogram', x = NULL, y = NULL)

dat <- data_frame(
    Value = c(111, 2345, 34567, 456789, 1000001, 1000000001),
    Time = 1:6
)

gridExtra::grid.arrange(
    
    ggplot(dat, aes(Time, Value)) +
        geom_line() +
        scale_y_continuous(labels = ff_denom( prefix = '$')) +
        labs(title = "Single Denominational Unit"),
    
    ggplot(dat, aes(Time, Value)) +
        geom_line() +
        scale_y_continuous(
            labels = ff_denom(mix.denom = TRUE, prefix = '$', pad.char = '')
        ) +
        labs(title = "Mixed Denominational Unit"),
    
    ncol = 2
)

Modeling

We can see its use in actual model reporting as well:

mod1 <- t.test(1:10, y = c(7:20))

sprintf(
    "t = %s (%s)",
    f_num(mod1$statistic),
    f_pval(mod1$p.value)
)

## [1] "t = -5.4 (p < .05)"

mod2 <- t.test(1:10, y = c(7:20, 200))

sprintf(
    "t = %s (%s)",
    f_num(mod2$statistic, 2),
    f_pval(mod2$p.value, digits = 2)
)

## [1] "t = -1.63 (p = .12)"

We can build a function to report model statistics:

report <- function(mod, stat = NULL, digits = c(0, 2, 2)) {
    
    stat <- if (is.null(stat)) stat <- names(mod[["statistic"]])
    sprintf(
        "%s(%s) = %s, %s", 
        gsub('X-squared', '&Chi;<sup>2</sup>', stat),
        paste(f_num(mod[["parameter"]], digits[1]), collapse = ", "),
        f_num(mod[["statistic"]], digits[2]),
        f_pval(mod[["p.value"]], digits = digits[3])
    )

}

report(mod1)

## [1] "t(22) = -5.43, p < .05"

report(oneway.test(count ~ spray, InsectSprays))

## [1] "F(5, 30) = 36.07, p < .05"

report(chisq.test(matrix(c(12, 5, 7, 7), ncol = 2)))

## [1] "&Chi;<sup>2</sup>(1) = .64, p = .42"

This enables in-text usage as well. First set up the models in a code chunk:

mymod <- oneway.test(count ~ spray, InsectSprays)
mymod2 <- chisq.test(matrix(c(12, 5, 7, 7), ncol = 2))

And then use `r report(mymod)` resulting in a report that looks like this: F(5, 30) = 36.07, p < .05. For Χ2 using proper HTML leads to Χ2(1) = .64, p = .42.