Installation

To install and load NBAMSeq

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("NBAMSeq")
library(NBAMSeq)

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1     257     310     517      19       1       1       1      84      92
gene2       9       1      19       1     368       2      56       1     482
gene3     142      77      93     200      74      39      22      99      38
gene4      19       4       4     234       1      20      42      98     136
gene5      65       2     165     126     381       9       2       5      58
gene6      61     347      10       5       1     125      28      24     156
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1        3      171       33        6        2        6        4        2
gene2       15        1      133        8      258        9      634       73
gene3      434        1        4       43      149        2       78       29
gene4        3       23      223       30       49      240       43       97
gene5        1        1       20      194        2        8        2      203
gene6        5       52        6       17      118      642       12        2
      sample18 sample19 sample20
gene1        4      166        1
gene2      160       37       41
gene3       30        3       16
gene4        3        2        4
gene5       17       33       72
gene6       15        1        6

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
           pheno       var1        var2       var3 var4
sample1 74.39437  0.3720971  0.03496827  1.0638518    1
sample2 69.34883  0.3363310  0.13003263  1.3202320    1
sample3 57.40232 -1.7681632 -1.15926239  0.4378728    1
sample4 46.36819 -0.4022975 -0.53442071  1.9860639    1
sample5 35.46529 -0.6202689 -0.22168022  0.2726405    2
sample6 75.79146  1.4774305 -0.59126508 -0.3102660    2

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

design = ~ s(pheno) + var1 + var2 + var3 + var4

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = design)
gsd
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

gsd = NBAMSeq(gsd)

Several other arguments in NBAMSeq function are available for users to customize the analysis.

library(BiocParallel)
gsd = NBAMSeq(gsd, parallel = TRUE)

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

res1 = results(gsd, name = "pheno")
head(res1)
DataFrame with 6 rows and 7 columns
       baseMean       edf      stat     pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   95.7599   1.00047 0.7874128 0.37501290 0.6122610   207.638   214.609
gene2  101.7836   1.00020 8.3111210 0.00394832 0.0394832   218.130   225.100
gene3   76.1389   1.00006 0.0613751 0.80445718 0.9420134   228.761   235.732
gene4   59.9637   1.43022 1.3346453 0.36153995 0.6122610   215.617   223.015
gene5   75.7577   1.00013 9.0843970 0.00258105 0.0322631   207.086   214.056
gene6  106.8134   1.00016 0.2284826 0.63285565 0.8327048   211.926   218.896

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

res2 = results(gsd, name = "var1")
head(res2)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   95.7599 -0.485851  0.497646 -0.976299 0.3289162 0.7827395   207.638
gene2  101.7836 -1.073688  0.439253 -2.444351 0.0145113 0.0761843   218.130
gene3   76.1389 -0.244427  0.402559 -0.607184 0.5437291 0.8458008   228.761
gene4   59.9637 -0.348149  0.466233 -0.746727 0.4552284 0.8211566   215.617
gene5   75.7577 -0.401881  0.433682 -0.926673 0.3540965 0.7827395   207.086
gene6  106.8134  1.178036  0.438972  2.683628 0.0072828 0.0438384   211.926
            BIC
      <numeric>
gene1   214.609
gene2   225.100
gene3   235.732
gene4   223.015
gene5   214.056
gene6   218.896

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

res3 = results(gsd, contrast = c("var4", "2", "0"))
head(res3)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   95.7599 -1.805477   1.69771 -1.063475 0.2875664  0.586177   207.638
gene2  101.7836 -3.463739   1.49139 -2.322491 0.0202065  0.112258   218.130
gene3   76.1389  0.716611   1.37287  0.521982 0.6016828  0.810264   228.761
gene4   59.9637 -1.589462   1.46270 -1.086662 0.2771861  0.586177   215.617
gene5   75.7577 -3.481129   1.47764 -2.355864 0.0184797  0.112258   207.086
gene6  106.8134 -1.757074   1.49100 -1.178455 0.2386153  0.586177   211.926
            BIC
      <numeric>
gene1   214.609
gene2   225.100
gene3   235.732
gene4   223.015
gene5   214.056
gene6   218.896

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)
DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue       padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric>  <numeric> <numeric> <numeric>
gene24   68.0425   1.00005  15.40773 8.73068e-05 0.00436534   209.640   216.611
gene16  188.2261   1.00018  12.69317 3.67656e-04 0.00688247   225.245   232.215
gene34  108.4120   1.00013  12.47469 4.12948e-04 0.00688247   235.345   242.315
gene5    75.7577   1.00013   9.08440 2.58105e-03 0.03226308   207.086   214.056
gene2   101.7836   1.00020   8.31112 3.94832e-03 0.03948318   218.130   225.100
gene14   89.8530   1.00011   7.91500 4.90673e-03 0.04088944   206.014   212.984
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))

Session info

sessionInfo()
R version 4.4.0 beta (2024-04-15 r86425)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_3.5.1               BiocParallel_1.38.0        
 [3] NBAMSeq_1.20.0              SummarizedExperiment_1.34.0
 [5] Biobase_2.64.0              GenomicRanges_1.56.0       
 [7] GenomeInfoDb_1.40.0         IRanges_2.38.0             
 [9] S4Vectors_0.42.0            BiocGenerics_0.50.0        
[11] MatrixGenerics_1.16.0       matrixStats_1.3.0          

loaded via a namespace (and not attached):
 [1] KEGGREST_1.44.0         gtable_0.3.5            xfun_0.43              
 [4] bslib_0.7.0             lattice_0.22-6          vctrs_0.6.5            
 [7] tools_4.4.0             generics_0.1.3          parallel_4.4.0         
[10] RSQLite_2.3.6           tibble_3.2.1            fansi_1.0.6            
[13] AnnotationDbi_1.66.0    highr_0.10              blob_1.2.4             
[16] pkgconfig_2.0.3         Matrix_1.7-0            lifecycle_1.0.4        
[19] GenomeInfoDbData_1.2.12 farver_2.1.1            compiler_4.4.0         
[22] Biostrings_2.72.0       munsell_0.5.1           DESeq2_1.44.0          
[25] codetools_0.2-20        htmltools_0.5.8.1       sass_0.4.9             
[28] yaml_2.3.8              pillar_1.9.0            crayon_1.5.2           
[31] jquerylib_0.1.4         DelayedArray_0.30.0     cachem_1.0.8           
[34] abind_1.4-5             nlme_3.1-164            genefilter_1.86.0      
[37] tidyselect_1.2.1        locfit_1.5-9.9          digest_0.6.35          
[40] dplyr_1.1.4             labeling_0.4.3          splines_4.4.0          
[43] fastmap_1.1.1           grid_4.4.0              colorspace_2.1-0       
[46] cli_3.6.2               SparseArray_1.4.0       magrittr_2.0.3         
[49] S4Arrays_1.4.0          survival_3.6-4          XML_3.99-0.16.1        
[52] utf8_1.2.4              withr_3.0.0             scales_1.3.0           
[55] UCSC.utils_1.0.0        bit64_4.0.5             rmarkdown_2.26         
[58] XVector_0.44.0          httr_1.4.7              bit_4.0.5              
[61] png_0.1-8               memoise_2.0.1           evaluate_0.23          
[64] knitr_1.46              mgcv_1.9-1              rlang_1.1.3            
[67] Rcpp_1.0.12             DBI_1.2.2               xtable_1.8-4           
[70] glue_1.7.0              annotate_1.82.0         jsonlite_1.8.8         
[73] R6_2.5.1                zlibbioc_1.50.0        

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.