pareg 1.8.0
This vignette is an introduction to the usage of pareg
. It estimates pathway enrichment scores by regressing differential expression p-values of all genes considered in an experiment on their membership to a set of biological pathways. These scores are computed using a regularized generalized linear model with LASSO and network regularization terms. The network regularization term is based on a pathway similarity matrix (e.g., defined by Jaccard similarity) and thus classifies this method as a modular enrichment analysis tool (Huang, Sherman, and Lempicki 2009).
if (!require("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("pareg")
We start our analysis by loading the pareg
package and other required libraries.
library(ggraph)
library(tidyverse)
library(ComplexHeatmap)
library(enrichplot)
library(pareg)
set.seed(42)
For the sake of this introductory example, we generate a synthetic pathway database with a pronounced clustering of pathways.
group_num <- 2
pathways_from_group <- 10
gene_groups <- purrr::map(seq(1, group_num), function(group_idx) {
glue::glue("g{group_idx}_gene_{seq_len(15)}")
})
genes_bg <- paste0("bg_gene_", seq(1, 50))
df_terms <- purrr::imap_dfr(
gene_groups,
function(current_gene_list, gene_list_idx) {
purrr::map_dfr(seq_len(pathways_from_group), function(pathway_idx) {
data.frame(
term = paste0("g", gene_list_idx, "_term_", pathway_idx),
gene = c(
sample(current_gene_list, 10, replace = FALSE),
sample(genes_bg, 10, replace = FALSE)
)
)
})
}
)
df_terms %>%
sample_n(5)
## term gene
## 1 g1_term_9 g1_gene_12
## 2 g1_term_5 g1_gene_7
## 3 g2_term_2 g2_gene_2
## 4 g1_term_3 bg_gene_47
## 5 g1_term_8 g1_gene_1
Before starting the actual enrichment estimation, we compute pairwise pathway similarities with pareg
’s helper function.
mat_similarities <- compute_term_similarities(
df_terms,
similarity_function = jaccard
)
hist(mat_similarities, xlab = "Term similarity")
We can see a clear clustering of pathways.
Heatmap(
mat_similarities,
name = "Similarity",
col = circlize::colorRamp2(c(0, 1), c("white", "black"))
)
We then select a subset of pathways to be activated. In a performance evaluation, these would be considered to be true positives.
active_terms <- similarity_sample(mat_similarities, 5)
active_terms
## [1] "g2_term_6" "g2_term_3" "g2_term_3" "g2_term_2" "g2_term_8"
The genes contained in the union of active pathways are considered to be differentially expressed.
de_genes <- df_terms %>%
filter(term %in% active_terms) %>%
distinct(gene) %>%
pull(gene)
other_genes <- df_terms %>%
distinct(gene) %>%
pull(gene) %>%
setdiff(de_genes)
The p-values of genes considered to be differentially expressed are sampled from a Beta distribution centered at \(0\). The p-values for all other genes are drawn from a Uniform distribution.
df_study <- data.frame(
gene = c(de_genes, other_genes),
pvalue = c(rbeta(length(de_genes), 0.1, 1), rbeta(length(other_genes), 1, 1)),
in_study = c(
rep(TRUE, length(de_genes)),
rep(FALSE, length(other_genes))
)
)
table(
df_study$pvalue <= 0.05,
df_study$in_study, dnn = c("sig. p-value", "in study")
)
## in study
## sig. p-value FALSE TRUE
## FALSE 34 17
## TRUE 1 28
Finally, we compute pathway enrichment scores.
fit <- pareg(
df_study %>% select(gene, pvalue),
df_terms,
network_param = 1, term_network = mat_similarities
)
## + /var/cache/basilisk/1.16.0/0/bin/conda create --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg 'python=3.9.12' --quiet -c anaconda
## + /var/cache/basilisk/1.16.0/0/bin/conda install --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg 'python=3.9.12' -c anaconda
## + /var/cache/basilisk/1.16.0/0/bin/conda install --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg -c anaconda 'python=3.9.12' 'tensorflow=2.10.0' 'tensorflow-probability=0.14.0'
The results can be exported to a dataframe for further processing…
fit %>%
as.data.frame() %>%
arrange(desc(abs(enrichment))) %>%
head() %>%
knitr::kable()
term | enrichment |
---|---|
g2_term_6 | -0.6759553 |
g2_term_3 | -0.6003887 |
g2_term_2 | -0.5817953 |
g2_term_4 | -0.4232832 |
g2_term_8 | -0.4122331 |
g1_term_2 | 0.3979995 |
…and also visualized in a pathway network view.
plot(fit, min_similarity = 0.1)
To provide a wider range of visualization options, the result can be transformed into an object which is understood by the functions of the enrichplot package.
obj <- as_enrichplot_object(fit)
dotplot(obj) +
scale_colour_continuous(name = "Enrichment Score")
treeplot(obj) +
scale_colour_continuous(name = "Enrichment Score")
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
sessionInfo()
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg/lib/libmkl_rt.so.1; LAPACK version 3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] pareg_1.8.0 tfprobability_0.15.1 tensorflow_2.16.0
## [4] enrichplot_1.24.0 ComplexHeatmap_2.20.0 lubridate_1.9.3
## [7] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
## [10] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
## [13] tibble_3.2.1 tidyverse_2.0.0 ggraph_2.2.1
## [16] ggplot2_3.5.1 BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] splines_4.4.0 later_1.3.2 ggplotify_0.1.2
## [4] filelock_1.0.3 polyclip_1.10-6 basilisk.utils_1.16.0
## [7] lifecycle_1.0.4 doParallel_1.0.17 globals_0.16.3
## [10] lattice_0.22-6 MASS_7.3-60.2 magrittr_2.0.3
## [13] sass_0.4.9 rmarkdown_2.26 jquerylib_0.1.4
## [16] yaml_2.3.8 remotes_2.5.0 httpuv_1.6.15
## [19] doRNG_1.8.6 sessioninfo_1.2.2 pkgbuild_1.4.4
## [22] reticulate_1.36.1 cowplot_1.1.3 DBI_1.2.2
## [25] RColorBrewer_1.1-3 keras_2.15.0 pkgload_1.3.4
## [28] zlibbioc_1.50.0 BiocGenerics_0.50.0 yulab.utils_0.1.4
## [31] tweenr_2.0.3 circlize_0.4.16 GenomeInfoDbData_1.2.12
## [34] IRanges_2.38.0 S4Vectors_0.42.0 ggrepel_0.9.5
## [37] listenv_0.9.1 tidytree_0.4.6 parallelly_1.37.1
## [40] codetools_0.2-20 DOSE_3.30.0 ggforce_0.4.2
## [43] tidyselect_1.2.1 shape_1.4.6.1 aplot_0.2.2
## [46] UCSC.utils_1.0.0 farver_2.1.1 viridis_0.6.5
## [49] doFuture_1.0.1 matrixStats_1.3.0 stats4_4.4.0
## [52] base64enc_0.1-3 jsonlite_1.8.8 GetoptLong_1.0.5
## [55] ellipsis_0.3.2 tidygraph_1.3.1 iterators_1.0.14
## [58] foreach_1.5.2 ggnewscale_0.4.10 progress_1.2.3
## [61] tools_4.4.0 treeio_1.28.0 Rcpp_1.0.12
## [64] glue_1.7.0 gridExtra_2.3 tfruns_1.5.3
## [67] xfun_0.43 qvalue_2.36.0 usethis_2.2.3
## [70] GenomeInfoDb_1.40.0 withr_3.0.0 BiocManager_1.30.22
## [73] fastmap_1.1.1 basilisk_1.16.0 fansi_1.0.6
## [76] digest_0.6.35 timechange_0.3.0 R6_2.5.1
## [79] mime_0.12 gridGraphics_0.5-1 colorspace_2.1-0
## [82] Cairo_1.6-2 GO.db_3.19.1 RSQLite_2.3.6
## [85] utf8_1.2.4 generics_0.1.3 data.table_1.15.4
## [88] prettyunits_1.2.0 graphlayouts_1.1.1 httr_1.4.7
## [91] htmlwidgets_1.6.4 scatterpie_0.2.2 whisker_0.4.1
## [94] pkgconfig_2.0.3 gtable_0.3.5 blob_1.2.4
## [97] XVector_0.44.0 shadowtext_0.1.3 htmltools_0.5.8.1
## [100] profvis_0.3.8 bookdown_0.39 fgsea_1.30.0
## [103] clue_0.3-65 scales_1.3.0 Biobase_2.64.0
## [106] png_0.1-8 ggfun_0.1.4 knitr_1.46
## [109] tzdb_0.4.0 reshape2_1.4.4 rjson_0.2.21
## [112] nloptr_2.0.3 nlme_3.1-164 proxy_0.4-27
## [115] cachem_1.0.8 GlobalOptions_0.1.2 parallel_4.4.0
## [118] miniUI_0.1.1.1 HDO.db_0.99.1 AnnotationDbi_1.66.0
## [121] logger_0.3.0 pillar_1.9.0 vctrs_0.6.5
## [124] urlchecker_1.0.1 promises_1.3.0 xtable_1.8-4
## [127] cluster_2.1.6 evaluate_0.23 magick_2.8.3
## [130] tinytex_0.50 zeallot_0.1.0 cli_3.6.2
## [133] compiler_4.4.0 rngtools_1.5.2 rlang_1.1.3
## [136] crayon_1.5.2 future.apply_1.11.2 labeling_0.4.3
## [139] plyr_1.8.9 fs_1.6.4 stringi_1.8.3
## [142] viridisLite_0.4.2 BiocParallel_1.38.0 munsell_0.5.1
## [145] Biostrings_2.72.0 lazyeval_0.2.2 devtools_2.4.5
## [148] GOSemSim_2.30.0 Matrix_1.7-0 dir.expiry_1.12.0
## [151] hms_1.1.3 patchwork_1.2.0 bit64_4.0.5
## [154] future_1.33.2 KEGGREST_1.44.0 shiny_1.8.1.1
## [157] highr_0.10 igraph_2.0.3 memoise_2.0.1
## [160] bslib_0.7.0 ggtree_3.12.0 fastmatch_1.1-4
## [163] bit_4.0.5 ape_5.8
Huang, Da Wei, Brad T Sherman, and Richard A Lempicki. 2009. “Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists.” Nucleic Acids Research 37 (1): 1–13.