
Package ‘SynExtend’
January 22, 2025

Type Package

Title Tools for Working With Synteny Objects

Version 1.19.3

biocViews Genetics, Clustering, ComparativeGenomics, DataImport

Description Shared order between genomic sequences provide a great deal of information. Syn-
teny objects produced by the R package DECIPHER provides quantitative informa-
tion about that shared order. SynExtend provides tools for extracting information from Syn-
teny objects.

Depends R (>= 4.4.0), DECIPHER (>= 2.28.0)

Imports methods, Biostrings, S4Vectors, IRanges, utils, stats,
parallel, graphics, grDevices, RSQLite, DBI

Suggests BiocStyle, knitr, igraph, markdown, rmarkdown

License GPL-3

ByteCompile true

Encoding UTF-8

NeedsCompilation yes

VignetteBuilder knitr

URL https://github.com/npcooley/SynExtend

BugReports https://github.com/npcooley/SynExtend/issues/new/

git_url https://git.bioconductor.org/packages/SynExtend

git_branch devel

git_last_commit 34a29be

git_last_commit_date 2025-01-16

Repository Bioconductor 3.21

Date/Publication 2025-01-21

Author Nicholas Cooley [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6029-304X>),

Aidan Lakshman [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-9465-6785>),

1

https://github.com/npcooley/SynExtend
https://github.com/npcooley/SynExtend/issues/new/
https://orcid.org/0000-0002-6029-304X
https://orcid.org/0000-0002-9465-6785

2 Contents

Adelle Fernando [ctb],
Erik Wright [aut]

Maintainer Nicholas Cooley <npc19@pitt.edu>

Contents
BlastSeqs . 3
BlockExpansion . 4
BlockReconciliation . 6
BuiltInEnsembles . 8
CIDist_NullDist . 9
ClusterByK . 10
DecisionTree-class . 12
dendrapply . 13
DisjointSet . 16
DPhyloStatistic . 17
Endosymbionts_GeneCalls . 19
Endosymbionts_LinkedFeatures . 20
Endosymbionts_Pairs01 . 20
Endosymbionts_Pairs02 . 21
Endosymbionts_Pairs03 . 21
Endosymbionts_Sets . 22
Endosymbionts_Synteny . 22
EstimateExoLabel . 23
EstimRearrScen . 24
EvoWeaver . 27
EvoWeaver-GOPreds . 30
EvoWeaver-PPPreds . 32
EvoWeaver-PSPreds . 34
EvoWeaver-SLPreds . 36
EvoWeb . 37
ExampleStreptomycesData . 38
ExoLabel . 39
ExpandDiagonal . 43
ExtractBy . 45
FastQFromSRR . 46
FindSets . 48
FitchParsimony . 49
Generic . 51
gffToDataFrame . 52
LinkedPairs . 53
MakeBlastDb . 54
MoranI . 55
NucleotideOverlap . 57
PairSummaries . 58
PhyloDistance . 61
PhyloDistance-CIDist . 63

BlastSeqs 3

PhyloDistance-JRFDist . 64
PhyloDistance-KFDist . 66
PhyloDistance-RFDist . 67
plot.EvoWeb . 68
predict.EvoWeaver . 70
PrepareSeqs . 74
RandForest . 75
SelectByK . 79
SequenceSimilarity . 81
simMat . 82
subset.dendrogram . 85
SubSetPairs . 86
SummarizePairs . 87
SuperTree . 90
SuperTreeEx . 91

Index 93

BlastSeqs Run BLAST queries from R

Description

Wrapper to run BLAST queries using the commandline BLAST tool directly from R. Can operate
on an XStringSet or a FASTA file.

This function requires the BLAST+ commandline tools, which can be downloaded here.

Usage

BlastSeqs(seqs, BlastDB,
blastType=c('blastn', 'blastp', 'tblastn', 'blastx', 'tblastx'),
extraArgs='', verbose=TRUE)

Arguments

seqs Sequence(s) to run BLAST query on. This can be either an XStringSet or a
path to a FASTA file.

BlastDB Path to FASTA file in a pre-built BLAST Database. These can be built using
either MakeBlastDb from R or the commandline makeblastdb function from
BLAST+. For more information on building BLAST DBs, see here.

blastType Type of BLAST query to run. See ’Details’ for more information on available
types.

extraArgs Additional arguments to be passed to the BLAST query executed on the com-
mand line. This should be a single character string.

verbose Should output be displayed?

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
https://www.ncbi.nlm.nih.gov/books/NBK569841/

4 BlockExpansion

Details

BLAST implements multiple types of search. Available types are the following:

• blastn: Nucleotide sequences against database of nucleotide sequences

• blastp: Protein sequences against database of protein sequences

• tblastn: Protein sequences against translated database of nucleotide sequences

• blastx: Translated nucleotide sequences against database of protein sequences

• tblastx: Translated nucleotide sequences against translated database of nucleotide sequences

Different BLAST queries require different inputs. The function will throw an error if the input data
does not match expected input for the requested query type.

Input sequences for blastn, blastx, and tblastx should be nucleotide data.

Input sequences for blastp and tblastn should be amino acid data.

Database for blastn, tblastn, tblastx should be nucleotide data.

Database for blastp and blastx should be amino acid data.

Value

Returns a data frame (data.frame) of results of the BLAST query.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

MakeBlastDb

Examples

#

BlockExpansion Attempt to expand blocks of paired features in a PairSummaries ob-
ject.

Description

Attempt to expand blocks of paired features in a PairSummaries object.

BlockExpansion 5

Usage

BlockExpansion(Pairs,
GapTolerance = 4L,
DropSingletons = FALSE,
Criteria = "PID",
Floor = 0.5,
NewPairsOnly = TRUE,
DBPATH,
Verbose = FALSE)

Arguments

Pairs An object of class PairSummaries.

GapTolerance Integer value indicating the diff between feature IDs that can be tolerated to
view features as part of the same block. Set by default to 4L, implying that
a single feature missing in a run of pairs will not cause the block to be split.
Setting to 3L would imply that a diff of 3 between features, or a gap of 2
features, can be viewed as those features being part of the same block.

DropSingletons Ignore solo pairs when planning expansion routes. Set to FALSE by default.

Criteria Either “PID” or “Score”, indicating which metric to use to keep or reject pairs.

Floor Lower PID limit for keeping a pair that was evaluated during expansion.

NewPairsOnly Logical indicating whether or not to return only the pairs that were kept from
all expansion attempts, or to return a PairSummaries object with the new pairs
folded in.

DBPATH A file or connection pointing to the DECIPHER database supplied to FindSynteny
for the original map construction.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

BlockExpansion uses a naive expansion algorithm to attempt to fill in gaps in blocks of paired
features and to attempt to expand blocks of paired features.

Value

An object of class PairSummaries.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries, NucleotideOverlap, link{SubSetPairs}, FindSynteny

6 BlockReconciliation

Examples

this function will be deprecated soon,
please see the new ExpandDiagonal() function.
library(RSQLite)
DBPATH <- system.file("extdata",

"Endosymbionts_v02.sqlite",
package = "SynExtend")

data("Endosymbionts_LinkedFeatures", package = "SynExtend")

Pairs <- PairSummaries(SyntenyLinks = Endosymbionts_LinkedFeatures,
PIDs = TRUE,
Score = TRUE,
DBPATH = DBPATH,
Verbose = TRUE)

data("Endosymbionts_Pairs01", package = "SynExtend")
Pairs02 <- BlockExpansion(Pairs = Pairs,

NewPairsOnly = FALSE,
DBPATH = DBPATH,
Verbose = TRUE)

BlockReconciliation Rejection scheme for asyntenic predicted pairs

Description

Take in a PairSummaries object and reject predicted pairs that conflict with syntenic blocks either
locally or globally.

Usage

BlockReconciliation(Pairs,
ConservativeRejection = TRUE,
Precedent = "Size",
PIDThreshold = NULL,
SCOREThreshold = NULL,
Verbose = FALSE)

Arguments

Pairs A PairSummaries object.
ConservativeRejection

A logical defaulting to TRUE. By default only pairs that conflict within a syntenic
block will be rejected. When FALSE any conflict will cause the rejection of the
pair in the smaller block.

BlockReconciliation 7

Precedent A character vector of length 1, defaulting to “Size”. Selector for whether func-
tion attempts to reconcile with block size as precedent, or mean block PID as
precedent. Currently “Metric” will select mean block PID to set block prece-
dent. Blocks of size 1 cannot reject other blocks. The default behavior causes
the rejection of any set of predicted pairs that conflict with a larger block of pre-
dicted pairs. Switching to “Metric” changes this behavior to any block of size 2
or greater will reject any predicted pair that both conflicts with the current block,
and is part of a block with a lower mean PID.

PIDThreshold Defaults to NULL, a numeric of length 1 can be used to retain pairs that would
otherwise be rejected. Pairs that would otherwise be rejected that have a PID >=
PIDThreshold will be retained.

SCOREThreshold Defaults to NULL, a numeric of length 1 can be used retain pairs that would
otherwise be rejected. Pairs that would otherwise be rejected that have a SCORE
>= SCOREThreshold will be retained.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

If a given PairSummaries object contains predicted pairs that conflict, i.e. imply paralogy, or an
“incorrect” and a “correct” ortholog prediction, these predictions will be reconciled. The function
scrolls through pairs based on the size of the syntenic block that they are part of, from largest to
smallest. When ConservativeRejection is TRUE only predicted pairs that exist within the syntenic
block “space” will be removed, this option leaves room for conflicting predictions to remain if they
are non-local to each other, or are on different indices. When ConservativeRejection is FALSE
any pair that conflicts with a larger syntenic block will be rejected. This option forces only 1-1
feature pairings, for features are part of any syntenic block. Predicted pairs that represent a syntenic
block size of 1 feature will not reject other pairs. PIDThreshold and SCOREThreshold can be used
to retain pairs that would otherwise be rejected based on available assessments of their pairwise
alignment.

Value

A data.frame of class “data.frame” and “PairSummaries” of paired genes that are connected by syn-
tenic hits. Contains columns describing the k-mers that link the pair. Columns “p1” and “p2” give
the location ids of the the genes in the pair in the form “DatabaseIdentifier_ContigIdentifier_GeneIdentifier”.
“ExactMatch” provides an integer representing the exact number of nucleotides contained in the
linking k-mers. “TotalKmers” provides an integer describing the number of distinct k-mers linking
the pair. “MaxKmer” provides an integer describing the largest k-mer that links the pair. A column
titled “Consensus” provides a value between zero and 1 indicating whether the kmers that link a
pair of features are in the same position in each feature, with 1 indicating they are in exactly the
same position and 0 indicating they are in as different a position as is possible. The “Adjacent”
column provides an integer value ranging between 0 and 2 denoting whether a feature pair’s direct
neighbors are also paired. Gap filled pairs neither have neighbors, or are included as neighbors. The
“TetDist” column provides the euclidean distance between oligonucleotide - of size 4 - frequences
between predicted pairs. “PIDType” provides a character vector with values of “NT” where either
of the pair indicates it is not a translatable sequence or “AA” where both sequences are translatable.
If users choose to perform pairwise alignments there will be a “PID” column providing a numeric

8 BuiltInEnsembles

describing the percent identity between the two sequences. If users choose to predict PIDs using
their own, or a provided model, a “PredictedPID” column will be provided.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, PairSummaries

Examples

this function will be deprecated soon...

data("Endosymbionts_Pairs02", package = "SynExtend")
Pairs03 <- BlockReconciliation(Pairs = Endosymbionts_Pairs02,

ConservativeRejection = FALSE,
Verbose = TRUE)

BuiltInEnsembles Pretrained EvoWeaver Ensemble Models

Description

EvoWeaver has best performance with an ensemble method combining individual evidence streams.
This data file provides pretrained models for ease of use. Two groups of models are provided: 1.
Models trained on the KEGG MODULES dataset 2. Models trained on the CORUM dataset

These models are used internally if the user does not provide their own model, and aren’t explicitly
designed to be accessed by the user.

See the examples for how to train your own ensemble model.

Usage

data("BuiltInEnsembles")

Format

The data contain a named list of objects of class glm. This list currently has two entries: "KEGG"
and "CORUM"

CIDist_NullDist 9

Examples

Training own ensemble method to avoid
using built-ins

exData <- get(data("ExampleStreptomycesData"))
ew <- EvoWeaver(exData$Genes[seq_len(50L)], MySpeciesTree=exData$Tree)
datavals <- predict(ew, NoPrediction=TRUE, Verbose=interactive())

Make sure the actual values correspond to the right pairs!
This example just picks random numbers
Do not do this for your own models
actual_values <- sample(c(0,1), nrow(datavals), replace=TRUE)
datavals[,'y'] <- actual_values
myModel <- glm(y~., datavals[,-c(1,2)], family='binomial')

predictionPW <- EvoWeaver(exData$Genes[51:60], MySpeciesTree=exData$Tree)
predict(predictionPW,

PretrainedModel=myModel, Verbose=interactive())

CIDist_NullDist Simulated Null Distributions for CI Distance

Description

Simulated values of Clustering Information Distance for random trees with 4 to 200 shared leaves.

Usage

data("CIDist_NullDist")

Format

A matrix CI_DISTANCE_INTERNAL with 197 columns and 13 rows.

Details

Each column of the matrix corresponds to the distribution of distances between random trees with
the given number of leaves. This begins at CI_DISTANCE_INTERNAL[,1] corresponding to 4 leaves,
and ends at CI_DISTANCE_INTERNAL[,197] corresponding to 200 leaves. Distances begin at 4
leaves since there is only one unrooted tree with 1, 2, or 3 leaves (so the distance between any given
tree with less than 4 leaves is always 0).

Each row of the matrix corresponds to statistics for the given simulation set. The first row gives the
minimum value, the next 9 give quantiles in c(1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%), and
the last three rows give the max, mean, and sd (resp.).

Source

Datafiles obtained from the TreeDistData package, published as part of Smith (2020).

https://ms609.github.io/TreeDistData/index.html

10 ClusterByK

References

Smith, Martin R. Information theoretic generalized Robinson–Foulds metrics for comparing phylo-
genetic trees. Bioinformatics, 2020. 36(20):5007-5013.

Examples

data(CIDist_NullDist)

ClusterByK Predicted pair trimming using K-means.

Description

A relatively simple k-means clustering approach to drop predicted pairs that belong to clusters with
a PID centroid below a specified user threshold.

Usage

ClusterByK(SynExtendObject,
UserConfidence = list("PID" = 0.3),
ClusterScalar = 4,
MaxClusters = 15L,
ColSelect = c("p1featurelength",

"p2featurelength",
"TotalMatch",
"Consensus",
"PID",
"Score"),

ColNorm = "Score",
ShowPlot = FALSE,
Verbose = FALSE)

Arguments

SynExtendObject

An object of class PairSummaries.

UserConfidence A named list of length 1 where the name identifies a column of the PairSummaries
object, and the value identifies a user confidence. Every k-means cluster with a
center value of the column value selected greater than the confidence is retained.

ClusterScalar A numeric value used to scale selection of how many clusters are used in kmeans
clustering. A transformed total within-cluster sum of squares value is fit to a
right hyperbola, and a scaled half-max value is used to select cluster number.
“ClusterScalar” is multiplied by the half-max to adjust cluster number selection.

MaxClusters Integer value indicating the largest number of clusters to test in a series of k-
means clustering tests.

ClusterByK 11

ColSelect A character vector of column names indicating which columns to use for k-
means clustering. When “p1featurelength”, “p2featurelength”, and “TotalMatch”
are included together, they are morphed into a value representing the match size
proportional to the longer of the two sequences.

ColNorm A character vector of column names indicating columns the user would like to
unit normalize. By default only set to “Score”.

ShowPlot Logical indicating whether or not to plot the CDFs for the PIDs of all k-means
clusters for the determined cluster number.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

ClusterByK uses a naive k-means routine to select for predicted pairs that belong to clusters whose
centroids are greater than or equal to the user specified column-value pair. This means that the
confidence is not a minimum, and that pairs with values below the user confidence can be retained.
The sum of within cluster sum of squares is used to approximate “knee” selection with the “Cluster-
Scalar” value. With a “ClusterScalar” value of 1 the half-max of a right-hyperbola fitted to the sum
of within-cluster sum of squares is used to pick the cluster number for evaluation, “ClusterScalar”
is multiplied by the half-max to tune cluster number selection. ClusterByK returns the original
object with an appended column and new attributes. The new column “ClusterID” is an integer
value indicating which k-means cluster a candidate pair belongs to, while the attribute “Retain” is
a named logical vector where the names correspond to ClusterIDs, and the logical value indicates
whether the cluster center was above the user suppled column-value pair. This function is intended
to be used at the genome-to-genome comparison level, and not say, at the level of an all-vs-all com-
parison of many genomes. It will work well in all-vs-all cases, but it is not optimized for that scale
yet.

Value

An object of class PairSummaries.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

SummarizePairs, NucleotideOverlap, FindSynteny, ExpandDiagonal

Examples

data("Endosymbionts_Pairs01", package = "SynExtend")

Pairs02 <- ClusterByK(SynExtendObject = Endosymbionts_Pairs01)

12 DecisionTree-class

DecisionTree-class Decision Trees for Random Forests

Description

DecisionTree objects comprising random forest models generated with RandForest.

Usage

S3 method for class 'DecisionTree'
as.dendrogram(object, ...)

S3 method for class 'DecisionTree'
plot(x, plotGain=FALSE, ...)

Arguments

object an object of class DecisionTree to convert to class dendrogram.

x an object of class DecisionTree to plot.

plotGain logical; should the Gini gain or decrease in sum of squared error be plotted for
each decision point of the tree?

... For plot, further arguments passed to plot.dendrogram and text. Arguments
prefixed with "text." (e.g., text.cex) will be passed to text, and all other
arguments are passed to plot.dendrogram.
For as.dendrogram, ... is further arguments for consistency with the generic
definition.

Details

These methods help work with DecisionTree objects, which are returned as part of RandForest.
Coercion to dendrogram objects creates a 'dendrogram' corresponding to the structure of the de-
cision tree. Each internal node possesses the standard attributes present in a 'dendrogram' object,
along with the following extra attributes:

• variable: which variable was used to split at this node.

• thresh: cutoff for partitioning points; values less than thresh are assigned to the left node,
and those greater than to the right node.

• gain: change in the metric to maximize. For classification trees this is the Gini Gain, and for
regression trees this is the decrease in sum of squared error.

Plotting allows for extra arguments to be passed to plot and text. Arguments prefixed with
'text' are passed to text, which controls the labeling of internal nodes. Common arguments
used here are text.cex, text.adj, text.srt, and text.col. All other arguments are passed to
plot.dendrogram. For example, col='blue' would change the dendrogram color to blue, whereas
text.col='blue' would change the interior node labels to blue (but not the dendrogram itself).

dendrapply 13

Value

as.dendrogram returns an object of class 'dendrogram'. plot returns NULL invisibly.

Warning

These functions can be quite slow for large decision trees. Usage is discouraged for trees with more
than 100 internal nodes.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

RandForest

Examples

set.seed(199L)
n_samp <- 100L
AA <- rnorm(n_samp, mean=1, sd=5)
BB <- rnorm(n_samp, mean=2, sd=3)
CC <- rgamma(n_samp, shape=1, rate=2)
err <- rnorm(n_samp, sd=0.5)
y <- AA + BB + 2*CC + err

d <- data.frame(AA,BB,CC,y)
train_i <- 1:90
test_i <- 91:100
train_data <- d[train_i,]
test_data <- d[test_i,]

rf_regr <- RandForest(y~., data=train_data, rf.mode="regression", max_depth=5L)
if(interactive()){

Visualize one of the decision trees
plot(rf_regr[[1]])

}

dend <- as.dendrogram(rf_regr[[1]])
plot(dend)

dendrapply Apply a Function to All Nodes of a Dendrogram

14 dendrapply

Description

Apply function FUN to each node of a dendrogram recursively. When y <- dendrapply(x, fn), then
y is a dendrogram of the same graph structure as x and for each node, y.node[j] <- FUN(x.node[j],
...) (where y.node[j] is an (invalid!) notation for the j-th node of y). Also provides flexibility in the
order in which nodes are evaluated.

NOTE: This man page is for the dendrapply function defined in the SynExtend package. See
?stats::dendrapply for the default method (defined in the stats package).

Usage

dendrapply(X, FUN, ...,
how = c("pre.order", "post.order"))

Arguments

X An object of class "dendrogram".

FUN An R function to be applied to each dendrogram node, typically working on its
attributes alone, returning an altered version of the same node.

... potential further arguments passed to FUN.

how one of c("pre.order", "post.order"), or an unambiguous abbreviation. De-
termines if nodes should be evaluated according to an preorder (default) or pos-
torder traversal. See details for more information.

Details

"pre.order" preserves the functionality of the previous dendrapply. For each node n, FUN is
applied first to n, then to n[[1]] (and any children it may have), then n[[2]] and its children, etc.
Notably, each node is evaluted prior to any of its children.

"post.order" allows for calculations that depend on the children of a given node. For each node
n, FUN is applied first to all children of n, then is applied to n itself. Notably, each node is evaluated
after all of its children.

Value

Usually a dendrogram of the same (graph) structure as X. For that, the function must be conceptually
of the form FUN <- function(X) { attributes(X) <-; X }, i.e., returning the node with
some attributes added or changed.

If the function provided does not return the node, the result is a nested list of the same structure as
X, or as close as can be achieved with the return values. If the function should only be applied to the
leaves of X, consider using rapply instead.

Warning

dendrapply identifies leaf nodes as nodes such that attr(node, 'leaf') == TRUE, and internal
nodes as nodes such that attr(node, 'leaf') %in% c(NULL, FALSE). If you modify or remove
this attribute, dendrapply may perform unexpectedly.

dendrapply 15

Note

The prior implementation of dendrapply was recursive and inefficient for dendrograms with many
non-leaves. This version is no longer recursive, and thus should no longer cause issues stemming
from insufficient C stack size (as mentioned in the ’Warning’ in dendrogram).

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

as.dendrogram, lapply for applying a function to each component of a list.

rapply is particularly useful for applying a function to the leaves of a dendrogram, and almost
always be used when the function does not need to be applied to interior nodes due to significantly
better performance.

Examples

require(graphics)

a smallish simple dendrogram
dhc <- as.dendrogram(hc <- hclust(dist(USArrests), "ave"))
(dhc21 <- dhc[[2]][[1]])

too simple:
dendrapply(dhc21, function(n) utils::str(attributes(n)))

toy example to set colored leaf labels :
local({

colLab <<- function(n) {
if(is.leaf(n)) {

a <- attributes(n)
i <<- i+1
attr(n, "nodePar") <- c(a$nodePar, list(lab.col = mycols[i], lab.font = i%%3))

}
n

}
mycols <- grDevices::rainbow(attr(dhc21,"members"))
i <- 0
})

dL <- dendrapply(dhc21, colLab)
op <- par(mfrow = 2:1)
plot(dhc21)
plot(dL) ## --> colored labels!

par(op)

Illustrating difference between pre.order and post.order
dend <- as.dendrogram(hclust(dist(seq_len(4L))))

f <- function(x){
if(!is.null(attr(x, 'leaf'))){

16 DisjointSet

v <- as.character(attr(x, 'label'))
} else {

v <- paste0(attr(x[[1]], 'newattr'), attr(x[[2]], 'newattr'))
}
attr(x, 'newattr') <- v
x

}

trying with default, note character(0) entries
preorder_try <- dendrapply(dend, f)
dendrapply(preorder_try, \(x){ print(attr(x, 'newattr')); x })

trying with postorder, note that children nodes will already
have been populated, so no character(0) entries
postorder_try <- dendrapply(dend, f, how='post.order')
dendrapply(postorder_try, \(x){ print(attr(x, 'newattr')); x })

DisjointSet Return single linkage clusters from PairSummaries objects.

Description

Takes in a PairSummaries object and return a list of identifiers organized into single linkage clus-
ters.

Usage

DisjointSet(Pairs,
Verbose = FALSE)

Arguments

Pairs A PairSummaries object.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
FALSE.

Details

Takes in a PairSummaries object and return a list of identifiers organized into single linkage clus-
ters.

Value

Returns a list of character vectors representing IDs of sequence features, typically genes.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

DPhyloStatistic 17

See Also

FindSynteny, Synteny-class, PairSummaries, FindSets

Examples

data("Endosymbionts_Pairs03", package = "SynExtend")

Sets <- DisjointSet(Pairs = Endosymbionts_Pairs03,
Verbose = TRUE)

DPhyloStatistic D-Statistic for Binary States on a Phylogeny

Description

Calculates if a presence/absence pattern is random, Brownian, or neither with respect to a given
phylogeny.

Usage

DPhyloStatistic(dend, PAProfile, NumIter = 1000L)

Arguments

dend An object of class dendrogram

PAProfile A vector representing presence/absence of binary traits. See Details for more
information.

NumIter Number of iterations to simulate for random permutation analysis.

Details

This function implements the D-Statistic for binary traits on a phylogeny, as introduced in Fritz and
Purvis (2009). The statstic is the following ratio:

Dobs −Db

Dr −Db

Here Dobs is the D value for the input data, Db is the value under simulated Brownian evolution,
and Dr is the value under random permutation of the input data. The D value measures the sum
of sister clade differences in a phylogeny weighted by branch lengths. A score close to 1 indicates
phylogenetically random distribution, and a score close to 0 indicates the trait likely evolved under
Brownian motion. Scores can fall outside this range; these scores are only intended as benchmark
points on the scale. See the original paper cited in References for more information.

The input PAProfile supports a number of formatting options:

• Character vector, where each element is a label of the dendrogram. Presence in the character
vector indicates presence of the trait in the corresponding label.

18 DPhyloStatistic

• Integer vector of length equivalent to the number of leaves, comprised of 0s and 1s. 0 indicates
absence in the corresponding leaf, and 1 indicates presence.

• Logical vector of length equivalent to number of leaves. FALSE indicates absence in the cor-
responding leaf, and TRUE indicates presence.

See Examples for a demonstration of each case.

Value

Returns a numerical value. Values close to 0 indicate random distribution, and values close to 1
indicate a Brownian distribution.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Fritz S.A. and Purvis A. Selectivity in Mammalian Extinction Risk and Threat Types: a New Mea-
sure of Phylogenetic Signal Strength in Binary Traits. Conservation Biology, 2010. 24(4):1042-
1051.

Examples

##
Replicating results from Table 1 in original paper
##

creates a dendrogram with 16 leaves and branch lengths all 1
distMat <- suppressWarnings(matrix(seq_len(17L), nrow=16, ncol=16))
testDend <- as.dendrogram(hclust(as.dist(distMat)))
testDend <- dendrapply(testDend, \(x){

attr(x, 'height') <- attr(x, 'height') / 2
return(x)

})
attr(testDend[[1]], 'height') <- attr(testDend[[2]], 'height') <- 3
attr(testDend, 'height') <- 4
plot(testDend)

set.seed(123)

extremely clumped (should be close to -2.4)
DPhyloStatistic(testDend, as.character(1:8))

clumped Brownian (should be close to 0)
DPhyloStatistic(testDend, as.character(c(1,2,5,6,10,12,13,14)))

random (should be close to 1.0)
DPhyloStatistic(testDend, as.character(c(1,4:6,10,13,14,16)))

overdispersed (should be close to 1.9)
DPhyloStatistic(testDend, as.character(seq(2,16,by=2)))

Endosymbionts_GeneCalls 19

###
Different ways to create PAProfiles
###

allLabs <- as.character(labels(testDend))

All these ways create a PAProfile with
presence in members 1:4
and absence in members 5:16

numeric vector:
c(rep(1,4), rep(0, length(allLabs)-4))

logical vector:
c(rep(TRUE,4), rep(FALSE, length(allLabs)-4))

character vector:
allLabs[1:4]

Endosymbionts_GeneCalls

Example genecalls

Description

A named list of DataFrames.

Usage

data("Endosymbionts_GeneCalls")

Format

A named list.

Details

Example genecalls.

Examples

data(Endosymbionts_GeneCalls)

20 Endosymbionts_Pairs01

Endosymbionts_LinkedFeatures

Example synteny links

Description

An object of class LinkedPairs.

Usage

data("Endosymbionts_LinkedFeatures")

Format

An object of class LinkedPairs.

Details

An object of class LinkedPairs.

Examples

data(Endosymbionts_LinkedFeatures)

Endosymbionts_Pairs01 Example predicted pairs

Description

An object of class PairSummaries.

Usage

data("Endosymbionts_Pairs01")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs01)

Endosymbionts_Pairs02 21

Endosymbionts_Pairs02 Example predicted pairs

Description

An object of class PairSummaries where blocks have been expanded.

Usage

data("Endosymbionts_Pairs02")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs02)

Endosymbionts_Pairs03 Example predicted pairs

Description

An object of class PairSummaries where blocks have been expanded and competitors have been
rejected.

Usage

data("Endosymbionts_Pairs03")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs03)

22 Endosymbionts_Synteny

Endosymbionts_Sets A list of disjoint sets.

Description

A named list of disjoint sets representing hypothetical COGs.

Usage

data("Endosymbionts_Sets")

Format

A named list of disjoint sets representing hypothetical COGs.

Details

A named list of disjoint sets representing hypothetical COGs.

Examples

data(Endosymbionts_Sets)

Endosymbionts_Synteny A synteny object

Description

An object of class Synteny.

Usage

data("Endosymbionts_Synteny")

Format

An object of class Synteny.

Details

An object of class Synteny.

Examples

data(Endosymbionts_Synteny)

EstimateExoLabel 23

EstimateExoLabel Estimate ExoLabel Disk Consumption

Description

Estimate the total disk consumption for ExoLabel.

Usage

EstimateExoLabel(num_v, avg_degree=2,
is_undirected=TRUE,
num_edges=num_v*avg_degree,
node_name_length=10L)

Arguments

num_v Approximate number of total unique nodes in the network.

avg_degree Average degree of each node in the network.

is_undirected Logical indicating whether edges are directed or undirected. Undirected edges
consume twice as much disk space internally because they need to be recorded
twice.

num_edges Approximate total number of edges in the network.
node_name_length

Approximate average length of each node name, in characters.

Details

This function provides a rough estimate of the total disk space required to run ExoLabel for a given
input network. avg_degree and num_edges need not both be specified. The function prints out the
estimated size of the original edgelist files, the estimated disk space and RAM to be consumed by
ExoLabel, and the approximate ratio of disk space relative to the original file.

node_name_length specifies the average length of the node names–since the names themselves
must be stored on disk, this contributes to the overall size. For relatively short node names (1-
16 characters) this has a negligible impact on overall disk consumption, though it may impact the
worst-case RAM consumption. Expected RAM consumption is determined by the average prefix
length a random pair of vertex labels have in common, and should be closer to the minimum usage
in most scenarios (see ExoLabel for more details on this).

Value

Invisibly returns a vector of length six, showing the estimated RAM consumption, estimated input
edgelist file size, estimated disk consumption using in-place sort (use_fast_sort=FALSE), esti-
mated disk consumption using fast sort (use_fast_sort=TRUE), estimated final file size, and ratio
of the input file size to total ExoLabel disk usage. All values denote bytes.

24 EstimRearrScen

Note

Estimating the average node label size is challenging, and unfortunately it does have a relatively
large effect on the estimated edgelist file size. This function should be used for rough estimations
of sizing, not absolute values. Errors in estimation of rough node name size will have a larger impact
on edgelist file estimation than on the ExoLabel disk usage, so users can have higher confidence in
estimated ExoLabel consumption.

Author(s)

Aidan Lakshman <AHL27@pitt.edu>

See Also

ExoLabel

Examples

100,000 nodes, average degree 2
EstimateExoLabel(num_v=100000, avg_degree=2)

10,000 nodes, 50,000 edges
EstimateExoLabel(num_v=10000, num_edges=50000)

EstimRearrScen Estimate Genome Rearrangement Events with Double Cut and Join
Operations

Description

Take in a Synteny object and return predicted rearrangement events.

Usage

EstimRearrScen(SyntenyObject, NumRuns = -1,
Mean = FALSE, MinBlockLength = -1,
Verbose = TRUE)

Arguments

SyntenyObject Synteny object, as obtained from running FindSynteny. Expected input is
unichromosomal sequences, though multichromosomal sequences are supported.

NumRuns Numeric; Number of times to simulate scenarios. The default value of -1 (and all
non-positive values) runs each analysis for

√
b iterations, where b is the number

of unique breakpoints.

EstimRearrScen 25

Mean Logical; If TRUE, returns the mean number of inversions and transpositions
found. If FALSE, returns the scenario corresponding to the minimum total
number of operations across all runs. This parameter only affects the number
of inversions and transpositions reported; the specific scenario returned is one
of the runs that resulted in a minimum value.

MinBlockLength Numeric; Minimum size of syntenic blocks to use for analysis. The default value
accepts all blocks. Set to a larger value to ignore sections of short mutations that
could be the result of SNPs or other small-scale mutations.

Verbose Logical; indicates whether or not to display a progress bar and print the time
difference upon completion.

Details

EstimRearrScen is an implementation of the Double Cut and Join (DCJ) method for analyzing
large scale mutation events.

The DCJ model is commonly used to model genome rearrangement operations. Given a genome,
we can create a connected graph encoding the order of conserved genomic regions. Each syntenic
region is split into two nodes, with one encoding the beginning and one encoding the end (beginning
and end defined relative to the direction of transcription). Each node is then connected to the two
nodes it is adjacent to in the genome.

For example, given a genome with 3 syntenic regions a − b − c such that b is transcribed in the
opposite direction relative to a, c, our graph would consist of nodes and edges a1− a2− b2− b1−
c1− c2.

Given two genomes, we derive syntenic regions between the two samples and then construct two of
these graph structures. A DCJ operation is one that cuts two connections of a common color and
creates two new edges. The goal of the DCJ model is to rearrange the graph of the first genome into
the second genome using DCJ operations. The DCJ distance is defined as the minimum number of
DCJ operations to transform one graph into another.

It can be easily shown that inversions can be performed with a single DCJ operation, and block
interchanges/order rearrangements can be performed with a sequence of two DCJ operations. DCJ
distance defines a metric space, and prior work has demonstrated algorithms for fast computation
of the DCJ distance.

However, DCJ distance inherently incentivizes inversions over block interchanges due to the former
requiring half as many DCJ operations. This is a strong assumption, and there is no evidence to
support gene order rearrangements occuring half as often as gene inversions.

This implementation incentivizes minimum number of total events rather than total number of DCJs.
As the search space is large and multiple sequences of events can be equally parsimonious, this algo-
rithm computes multiple scenarios with random sequences of operations to try to find the minimum
amount of events. Users can choose to receive the best found solution or the mean number of events
from all solutions.

Value

An NxN matrix of lists with the same shape as the input Synteny object. This is wrapped into a
GenRearr object for pretty printing.

The diagonal corresponds to total sequence length of the corresponding genome.

26 EstimRearrScen

In the upper triangle, entry [i,j] corresponds to the percent hits between genome i and genome j.
In the lower triangle, entry [i,j] contains a List object with 5 properties:

• $Inversions and $Transpositions contain the (Mean/min) number of estimated inversions
and transpositions (resp.) between genome i and genome j.

• $pct_hits contains percent hits between the genomes.

• $Scenario shows the sequence of events corresponding to the minimum rearrangement sce-
nario found. See below for details.

• $Key provides a mapping between syntenic blocks and genome positions. See below for de-
tails.

The print.GenRearr method prints this data out as a matrix, with the diagonal showing the number
of chromosomes and the lower triangle displaying xI,yT, where x,y the number of inversions and
transpositions (resp.) between the corresponding entries.

The $Scenario entry describes a sequences of steps to rearrange one genome into another, as
found by this algorithm. The goal of the DCJ model is to rearrange the second genome into the
first. Thus, with N syntenic regions total, we can arbitrarily choose the syntenic blocks in genome 1
to be ordered 1,2,...,N, and then have genome 2 numbers relative to that.

As an example, suppose genome 1 has elements A B E(r) G and genome 2 has elements E B(r)
A(r) G, with X(r) denoting block X has reversed direction of transcription. We can then arbitrarily
assign blocks to numbers such that genome 1 is (1 2 3 4) and genome 2 is (3 -2 -1 4), where a
negative indicates reversed direction of transcription relative to the corresponding syntenic block in
genome 1.

Each entry in $Scenario details an operation, the result after that operation, and the number of
blocks involved in the operation. If we reversed the middle two entries of genome 2, the entry in
$Scenario would be:

inversion: 3 1 2 4 { 2 }

Here we inverted the whole block (-2 -1) into (1 2). We could then finish the rearrangement by
performing a transposition to move block 3 between 2 and 4. The entries of $Scenario in this case
would be the following:

Original: 3 -2 -1 4

inversion: 3 1 2 4 { 2 }

block interchange: 1 2 3 4 { 3 }

Step 1 is the original state of genome 2, step 2 inverts 2 elements to arrive at (3 1 2 4), and then
step 3 moves one element to arrive at (1 2 3 4).

It is important to note that the numbered genomic regions in $Scenario are not genes, they are
blocks of conserved syntenic regions between the genomes. These blocks may not match up with
the original blocks from the Synteny object, since some are combined during pre-processing to
expedite calculations.

$Key is a mapping between these numbered regions and the original genomic regions. This is a 5
column matrix with the following columns (in order):

1. start1: Nucleotide position for the first nucleotide in of the syntenic region on genome 1.

2. start2: Same as start1, but for genome 2

3. length: Length of block, in nucleotides

EvoWeaver 27

4. rel_direction_on_2: 1 if the blocks have the same transcriptonal direction on both genomes,
and 0 if the direction is reversed in genome 2

5. index1: Label of the genetic region used in $Scenario output

Author(s)

Aidan Lakshman (<ahl27@pitt.edu>)

References

Friedberg, R., Darling, A. E., & Yancopoulos, S. (2008). Genome rearrangement by the double cut
and join operation. Bioinformatics, 385-416.

See Also

FindSynteny

Synteny

Examples

db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db)
synteny

rearrs <- EstimRearrScen(synteny)

rearrs # view whole object
rearrs[[2,1]] # view details on Genomes 1 and 2

EvoWeaver EvoWeaver: Predicting Protein Functional Association Networks

Description

EvoWeaver is an S3 class with methods for predicting functional association using protein or gene
data. EvoWeaver implements multiple algorithms for analyzing coevolutionary signal between
genes, which are combined into overall predictions on functional association. For details on predic-
tions, see predict.EvoWeaver.

Usage

EvoWeaver(ListOfData, MySpeciesTree=NULL, NoWarn=FALSE)

S3 method for class 'EvoWeaver'
SpeciesTree(ew, Verbose=TRUE, Processors=1L)

28 EvoWeaver

Arguments

ListOfData A list of gene data, where each entry corresponds to information on a particular
gene. List must contain either dendrograms or vectors, and cannot contain a
mixture. If list is composed of dendrograms, each dendrogram is a gene tree
for the corresponding entry. If list is composed of vectors, vectors should be
numeric or character vectors denoting the genomes containing that gene.

MySpeciesTree An object of class 'dendrogram' representing the overall species tree for the
list provided in ListOfData.

NoWarn Several algorithms depend on having certain data. When a EvoWeaver object is
initialized, it automatically selects which algorithms can be used given the input
data. By default, EvoWeaver will notify the user of algorithms that cannot be
used with warnings. Setting NoWarn=TRUE will suppress these messages.

ew An object of class EvoWeaver

Verbose Should output be displayed when calculating species tree?

Processors Number of processors to use. Set to NULL to automatically use the maximum
amount of processors.

Details

EvoWeaver expects input data to be a list. All entries must be one of the following:

1. ListOfData[[i]] = c('ID#1', 'ID#2', ..., 'ID#k')

2. ListOfData[[i]] = c('i1_d1_s1_p1', 'i2_d2_s2_p2', ..., 'ik_dk_sk_pk')

3. ListOfData[[i]] = dendrogram(...)

In (1), each ID#i corresponds to the unique identifier for genome #i. For entry #j in the list, the
presence of ’ID#i’ means genome #i has an ortholog for gene/protein #j.

Case (2) is the same as (1), just with the formatting of names slightly different. Each entry is of the
form i_d_p, where i is the unique identifier for the genome, d is which chromosome the ortholog
is located, s indicates whether the gene is on the forward or reverse strand, and p is what position
the ortholog appears in on that chromosome. p must be a numeric. s must be 0 or 1, corresponding
to whether the gene is on the forward or reverse strand. Whether 0 denotes forward or reverse is
inconsequential as long as the scheme is consistent. i,d can be any value as long as it doesn’t
contain an underscore ('_').

Case (3) expects gene trees for each gene, with labeled leaves corresponding to each source genome.
If ListOfData is in this format, taking labels(ListOfData[[i]]) should produce a character
vector that matches the format of one of the previous cases.

See the Examples section for illustrative examples.

Whenever possible, provide a full set of dendrogram objects with leaf labels in form (2). This will
allow the most algorithms to run. What follows is a more detailed description of which inputs allow
which algorithms.

EvoWeaver requires input of scenario (3) to use distance matrix methods, and requires input of
scenario (2) (or (3) with leaves labeled according to (2)) for gene organization analyses. Sequence-
level methods require dendrograms with sequence information included as the state attribute in
each leaf node.

EvoWeaver 29

Note that ALL entries must belong to the same category–a combination of character vectors and
dendrograms is not allowed.

Prediction of a functional association network is done using predict(EvoWeaverObject). See
predict.EvoWeaver for more information.

The SpeciesTree function takes in an object of class EvoWeaver and returns a species tree. If the
object was not initialized with a species tree, it calculates one using SuperTree. The species tree
for a EvoWeaver object can be set with attr(ew, 'speciesTree') <-

Value

Returns a EvoWeaver object.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.EvoWeaver, ExampleStreptomycesData, BuiltInEnsembles, SuperTree

Examples

I'm using gene to mean either a gene or protein

Imagine we have the following 4 genomes:
(each letter denotes a distinct gene)
Genome 1: a b c d
Genome 2: d c e
Genome 3: b a e
Genome 4: a e

We have 5 total genes: (a,b,c,d,e)
a is present in genomes 1, 3, 4
b is present in genomes 1, 3
c is present in genomes 1, 2
d is present in genomes 1, 2
e is present in genomes 2, 3, 4

Constructing a EvoWeaver object according to (1):
l <- list()
l[['a']] <- c('1', '3', '4')
l[['b']] <- c('1', '3')
l[['c']] <- c('1', '2')
l[['d']] <- c('1', '2')
l[['e']] <- c('2', '3', '4')

Each value of the list corresponds to a gene
The associated vector shows which genomes have that gene
pwCase1 <- EvoWeaver(l)

Constructing a EvoWeaver object according to (2):

30 EvoWeaver-GOPreds

Here we need to add in the genome, chromosome, direction, and position
As we only have one chromosome,
we can just set that to 1 for all.
Position can be identified with knowledge, or with
FindGenes(...) from DECIPHER.

In this toy case, genomes are small so it's simple.
l <- list()
l[['a']] <- c('a_1_0_1', 'c_1_1_2', 'd_1_0_1')
l[['b']] <- c('a_1_1_2', 'c_1_1_1')
l[['c']] <- c('a_1_1_3', 'b_1_0_2')
l[['d']] <- c('a_1_0_4', 'b_1_0_1')
l[['e']] <- c('b_1_0_3', 'c_1_0_3', 'd_1_0_2')

pwCase2 <- EvoWeaver(l)

For Case 3, we just need dendrogram objects for each
l[['a']] <- dendrogram(...)
l[['b']] <- dendrogram(...)
l[['c']] <- dendrogram(...)
l[['d']] <- dendrogram(...)
l[['e']] <- dendrogram(...)

Leaf labels for these will be the same as the
entries in Case 1.

EvoWeaver-GOPreds Gene Organization Predictions for EvoWeaver

Description

EvoWeaver incorporates four classes of prediction, each with multiple methods and algorithms. Co-
localization (Coloc) methods examine conservation of relative location and relative orientation of
genetic regions within the genome.

predict.EvoWeaver currently supports three Coloc methods:

• 'GeneDistance'

• 'MoransI'

• 'OrientationMI'

Format

None.

Details

All distance matrix methods require a EvoWeaver object initialized with gene locations using the a
four number code. See EvoWeaver for more information on input data types.

EvoWeaver-GOPreds 31

The built-in GeneDistance examines relative location of genes within genomes as evidence of
interaction. For a given pair of genes, the score is given by

∑
G e1−|dIG|, where G the set of

genomes and dIG the difference in index between the two genes in genome G. Using gene index
instead of number of base pairs avoids bias introduced by gene and genome length. If a given gene
is found multiple times in the same genome, the maximal score across all possible pairings for that
gene is used. The score for a pair of gene groups is the mean score of all gene pairings across the
groups.

MoransI measures the extent to which gene distances are preserved across a phylogeny. This func-
tion uses the same initial scoring scheme as GeneDistance. The raw scores are passed into MoranI
to calculate spatial autocorrelation. "Space" is taken as e−C , where C is the Cophenetic distance
matrix calculated from the species tree of the inputs. As such, this method requires a species tree as
input, which can be calculated from a set of gene trees using SuperTree.

OrientationMI uses mutual information of the relative orientation of each pair of genes. Conser-
vation of relative orientation between gene pairs has been shown to imply functional association
in prior work. This algorithm requires that the EvoWeaver object is initialized with a four number
code, with the third number either 0 or 1, denoting whether the gene is on the forward or reverse
strand. The mutual information is calculated as:

∑
x∈X

∑
y∈Y

(−1)(x!=y)P(X,Y)(x, y) log

(
P(X,Y)(x, y)

PX(x)PY (y)

)
Here X = Y = {0, 1}, x is the direction of the gene with lower index, y is the direction of the
gene with higher index, and P(T)(t) is the probability of T = t. Note that this is a weighted MI as
introduced by Beckley and Wright (2021). The mutual information is augmented by the addition
of a single pseudocount to each value, and normalized by the joint entropy of X,Y . P-values are
calculated using Fisher’s Exact Test on the contingency table.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Beckley, Andrew and E. S. Wright. Identification of antibiotic pairs that evade concurrent resis-
tance via a retrospective analysis of antimicrobial susceptibility test results. The Lancet Microbe,
2021. 2(10): 545-554.

Korbel, J. O., et al., Analysis of genomic context: prediction of functional associations from con-
served bidirectionally transcribed gene pairs. Nature Biotechnology, 2004. 22(7): 911-917.

Moran, P. A. P., Notes on Continuous Stochastic Phenomena. Biometrika, 1950. 37(1): 17-23.

See Also

EvoWeaver

predict.EvoWeaver

EvoWeaver Phylogenetic Profiling Predictors

EvoWeaver Phylogenetic Structure Predictors

EvoWeaver Sequence-Level Predictors

32 EvoWeaver-PPPreds

EvoWeaver-PPPreds Phylogenetic Profiling Predictions for EvoWeaver

Description

EvoWeaver incorporates four classes of prediction, each with multiple methods and algorithms.
Phylogenetic Profiling (PP) methods examine conservation of gain/loss events within orthology
groups using phylogenetic profiles constructed from presence/absence patterns.

predict.EvoWeaver currently supports nine PP methods:

• 'ExtantJaccard'

• 'Hamming'

• 'GLMI'

• 'PAPV'

• 'CorrGL'

• 'ProfDCA'

• 'Behdenna'

• 'GLDistance'

• 'PAJaccard'

• 'PAOverlap'

Format

None.

Details

Most PP methods are compatible with a EvoWeaver object initialized with any input type. See
EvoWeaver for more information on input data types.

When Method='Ensemble' or Method="PhylogeneticProfiling", EvoWeaver uses methods GLMI,
GLDistance, PAJaccard, and PAOverlap.

All of these methods use presence/absence (PA) profiles, which are binary vectors such that 1 im-
plies the corresponding genome has that particular gene, and 0 implies the genome does not have
that particular gene.

Methods Hamming and ExtantJaccard use Hamming and Jaccard distance (respectively) of PA
profiles to determine overall score.

GLMI uses mutual information of gain/loss (G/L) vectors to determine score, employing a weighting
scheme such that concordant gains/losses give positive information, discordant gains/losses give
negative information, and events that do not cooccur with a gain/loss in the other gene group give
no information.

PAJaccard calculates the centered Jaccard index of P/A profiles, where each clade with identical
extant patterns is collapsed to a single leaf.

EvoWeaver-PPPreds 33

PAOverlap calculates the proportion of time in the ancestry that both genes cooccur relative to the
total time each individual gene occurs, based on ancestral states inferred with Fitch parsimony.

PAPV calculates a p-value for PA profiles using Fisher’s Exact Test. The returned score is provided
as 1-p_value so that larger scores indicate more significance, and smaller scores indicate less
significance. This rescaling is consistent with the other similarity metrics in EvoWeaver. This can
be used with ExtantJaccard, Hamming, or GLMI to weight raw scores by statistical significance.

ProfDCA uses the direct coupling analysis algorithm introduced by Weigt et al. (2005) to deter-
mine direct information between PA profiles. This approach has been validated on PA profiles in
Fukunaga and Iwasaki (2022), though the implementation in EvoWeaver forsakes the persistent
contrasive divergence method in favor of the the algorithm from Lokhov et al. (2018) for increased
speed and exact solutions. Note that this algorithm is still extremely slow relative to the other
methods despite the aforementioned runtime improvements.

Behdenna implements the method detailed in Behdenna et al. (2016) to find statistically significant
interactions using co-occurence of gain/loss events mapped to ancestral states on a species tree.
This method requires a species tree as input. If the EvoWeaver object is initialized with dendrogram
objects, SuperTree will be used to infer a species tree.

GLDistance uses a similar method to Behdenna. This method uses Fitch Parsimony to infer where
events were gained or lost on a species tree, and then looks for distance between these gain/loss
events. Unlike Behdenna, this method takes into account the types of events (ex. gain/gain and
loss/loss are treated differently than gain/loss). This method requires a species tree as input. If the
EvoWeaver object is initialized with dendrogram objects, SuperTree will be used to infer a species
tree.

CorrGL infers where events were gained or lost on a species tree as in method GLDistance, then
uses a Pearson’s correlation coefficient weighted by p-value to infer similarity.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Behdenna, A., et al., Testing for Independence between Evolutionary Processes. Systematic Biol-
ogy, 2016. 65(5): p. 812-823.

Chung, N.C, et al., Jaccard/Tanimoto similarity test and estimation methods for biological presence-
absence data. BMC Bioinformatics, 2019. 20(S15).

Date, S.V. and E.M. Marcotte, Discovery of uncharacterized cellular systems by genome-wide anal-
ysis of functional linkages. Nature Biotechnology, 2003. 21(9): p. 1055-1062.

Fukunaga, T. and W. Iwasaki, Inverse Potts model improves accuracy of phylogenetic profiling.
Bioinformatics, 2022.

Lokhov, A.Y., et al., Optimal structure and parameter learning of Ising models. Science advances,
2018. 4(3): p. e1700791.

Pellegrini, M., et al., Assigning protein function by comparative genome analysis: Protein phyloge-
netic profiles. Proceedings of the National Academy of Sciences, 1999. 96(8) p. 4285-4288

Weigt, M., et al., Identification of direct residue contacts in protein-protein interaction by message
passing. Proceedings of the National Academy of Sciences, 2009. 106(1): p. 67-72.

34 EvoWeaver-PSPreds

See Also

EvoWeaver

predict.EvoWeaver

EvoWeaver Phylogenetic Structure Predictors

EvoWeaver Gene Organization Predictors

EvoWeaver Sequence-Level Predictors

EvoWeaver-PSPreds Phylogenetic Structure Predictions for EvoWeaver

Description

EvoWeaver incorporates four classes of prediction, each with multiple methods and algorithms.
Phylogenetic Structure (PS) methods examine conservation of overall evolutionary rates within
orthology groups using distance matrices constructed from each gene tree.

predict.EvoWeaver currently supports three PS methods:

• 'RPMirrorTree'

• 'RPContextTree'

• 'TreeDistance'

Format

None.

Details

All distance matrix methods require a EvoWeaver object initialized with dendrogram objects. See
EvoWeaver for more information on input data types.

The RPMirrorTree method was introduced by Pazos et al. (2001). This method builds distance ma-
trices using a nucleotide substitution model, and then calculates coevolution between gene families
using the Pearson correlation coefficient of the upper triangle of the two corresponding matrices.

Experimental analysis has shown data in the upper triangle is heavily redundant and rapidly over-
whelms available system memory. Previous work has incorporated dimensionality reduction such as
SVD to reduce the dimensionality of the data, but this prevents parallelization of the data and doesn’t
solve memory issues (since SVD takes as input the entire matrix with columns corresponding to
upper triangle values). EvoWeaver instead uses a seeded random projection following Achlioptas
(2001) to reduce the dimensionality of the data in a reproducible and parallel-compatible way. We
also utilize Spearman’s ρ, which outperforms Pearson’s r following dimensionality reduction.

Subsequent work by Pazos et al. (2005) and Sato et al. (2005, 2006) found multiple ways to
improve predictions from the initial MirrorTree method. These methods incorporate additional
phylogenetic context, and are thus called ContextTree methods. These improvements include
correcting for overall evolutionary rate using a species tree and/or using projection vectors. The
built-in RPContextTree method implements a species tree correction, and weights the resulting

EvoWeaver-PSPreds 35

score by the normalized Hamming distance of the presence/absence profiles. This can correct for
gene trees with low overlap that achieve spuriously high scores via random projection. Additional
correction measures are implemented in the MTCorrection argument.

The TreeDistance method uses phylogenetic tree distance to quantify differences between gene
trees. This method implements a number of metrics and groups them together to improve overall
runtime. The default tree distance method is normalized Robinson-Foulds distance due to its lower
computational complexity. Other methods can be specified using the TreeMethods argument, which
expects a character vector containing one or more of the following:

• "CI": Clustering Information Distance

• "RF": Robinson-Foulds Distance

• "JRF": Jaccard-Robinson-Foulds Distance

• "Nye": Nye Similarity

• "KF": Kuhner-Felsenstein Distance

• "all": All of the above methods

See the links above for more information and references. All of these metrics are accessible using
the PhyloDistance method. Method "JRF" defaults to a k value of 4, but this can be specified
further if necessary using the JRFk input parameter. Higher values of k approach the value of
Robinson-Foulds distance, but these have a negligible impact on performance so use of the default
parameter is encouraged for simplicity. Multiple metrics can be specified.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Achlioptas, Dimitris. Database-friendly random projections. Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2001. p. 274-281.

Pazos, F. and A. Valencia, Similarity of phylogenetic trees as indicator of protein–protein interac-
tion. Protein Engineering, Design and Selection, 2001. 14(9): p. 609-614.

Pazos, F., et al., Assessing protein co-evolution in the context of the tree of life assists in the predic-
tion of the interactome. J Mol Biol, 2005. 352(4): p. 1002-15.

Sato, T., et al., The inference of protein-protein interactions by co-evolutionary analysis is improved
by excluding the information about the phylogenetic relationships. Bioinformatics, 2005. 21(17):
p. 3482-9.

Sato, T., et al., Partial correlation coefficient between distance matrices as a new indicator of
protein-protein interactions. Bioinformatics, 2006. 22(20): p. 2488-92.

See Also

EvoWeaver

predict.EvoWeaver

EvoWeaver Phylogenetic Profiling Predictors

EvoWeaver Gene Organization Predictors

36 EvoWeaver-SLPreds

EvoWeaver Sequence-Level Predictors

PhyloDistance

EvoWeaver-SLPreds Sequence-Level Predictions for EvoWeaver

Description

EvoWeaver incorporates four classes of prediction, each with multiple methods and algorithms.
Sequence-Level (SL) methods examine conservation of patterns in sequence data, commonly ex-
hibited due to physical interactions between proteins.

predict.EvoWeaver currently supports three SL methods:

• 'SequenceInfo'

• 'GeneVector'

• 'Ancestral'

Format

None.

Details

All residue methods require a EvoWeaver object initialized with dendrogram objects and ancestral
states. See EvoWeaver for more information on input data types.

When Method='Ensemble' or Method="SequenceLevel", EvoWeaver uses methods SequenceInfo
and GeneVector.

The SequenceInfo method looks at mutual information between sites in a multiple sequence align-
ment (MSA). This approach extends prior work in Martin et al. (2005). Each site from the first gene
group is paired with the site from the second gene group that maximizes their mutual information.

The GeneVector method uses the natural vector encoding method introduced in Zhao et al. (2022).
This encodes each gene sequences as a 92-dimensional vector, with the following entries:

N(S) = (nA, nC , nG, nT , µA, µC , µG, µT , DA
2 , D

C
2 , D

G
2 , D

T
2 , nAA, nAC , . . . , nTT , nAAA, nAAC , . . . , nTTT)

Here nX is the raw total count of nucleotide X (or di/trinucleotide). For single nucleotides, we also
calculate µX , the mean location of nucleotide X , and DX

2 , the second moment of the location of
nucleotide X . The overall natural vector for a COG is calculated as the normalized mean vector
from the natural vectors of all component gene sequences. Interaction scores are computed using
Pearson’s R between each COG’s natural vector. These di/trinucleotide counts are by default ex-
cluded, but can be included using the extended=TRUE argument. Using the extended counts has
shown minimal increased accuracy at the cost of slower runtime in benchmarking.

The Ancestral method calculates coevolution by looking at correlation of residue mutations near
the leaves of each respective gene tree.

EvoWeb 37

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Martin, L. C., Gloor, G. B., Dunn, S. D. & Wahl, L. M, Using information theory to search for
co-evolving residues in proteins. Bioinformatics, 2005. 21(4116-4124).

Zhao, N., et al., Protein-protein interaction and non-interaction predictions using gene sequence
natural vector. Nature Communications Biology, 2022. 5(652).

See Also

EvoWeaver

predict.EvoWeaver

EvoWeaver Phylogenetic Profiling Predictors

EvoWeaver Phylogenetic Structure Predictors

EvoWeaver Gene Organization Predictors

EvoWeb EvoWeb: Predictions from EvoWeaver

Description

EvoWeb objects are outputted from predict.EvoWeaver.

This class wraps the simMat object with some other diagnostic information intended to help inter-
pret the output of EvoWeaver predictions..

Format

An object of class "EvoWeb", which inherits from "simMat".

Details

predict.EvoWeaver returns a EvoWeb object, which bundles some methods to make formatting
and printing of results slightly nicer. This currently only implements a plot function, but future
functionality is in the works.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.EvoWeaver

simMat

plot.EvoWeb

38 ExampleStreptomycesData

Examples

##############
Prediction with built-in model and data
###############

exData <- get(data("ExampleStreptomycesData"))

Subset isn't necessary but is faster for a working example
ew <- EvoWeaver(exData$Genes[1:10])

evoweb <- predict(ew, Method='ExtantJaccard')

print out results as an adjacency matrix
print(evoweb)

print out results as a pairwise data.frame
as.data.frame(evoweb)

ExampleStreptomycesData

Example EvoWeaver Input Data from Streptomyces Species

Description

Data from Streptomyces species to test EvoWeaver functionality.

Usage

data("ExampleStreptomycesData")

Format

The data contain two elements, Genes and Tree. Genes is a list of presence/absence vectors in the
input required for EvoWeaver. Tree is a species tree used for additional input.

Details

This dataset contains a number of Clusters of Orthologous Genes (COGs) and a species tree for use
with EvoWeaver. This dataset showcases an example of using EvoWeaver with a list of vectors.
Entries in each vector are formatted correctly for use with co-localization prediction. Each COG i
contains entries of the form a_b_c, indicating that the gene was found in genome a on chromosome
b, and was at the c’th location. The original dataset is comprised of 301 unique genomes.

See Also

EvoWeaver

ExoLabel 39

Examples

exData <- get(data("ExampleStreptomycesData"))
ew <- EvoWeaver(exData$Genes)
Subset isn't necessary but is faster for a working example
predict(ew, Subset=1:10, MySpeciesTree=exData$Tree)

ExoLabel ExoLabel: Out of Memory Fast Label Propagation

Description

Runs Fast Label Propagation using disk space for constant memory complexity.

Usage

ExoLabel(edgelistfiles,
outfile=tempfile(),
mode=c("undirected", "directed"),
add_self_loops=FALSE,
ignore_weights=FALSE,
normalize_weights=FALSE,
iterations=0L,
inflation=1.05,
return_table=FALSE,
consensus_cluster=FALSE,
use_fast_sort=FALSE,
verbose=interactive(),
sep='\t',
tempfiledir=tempdir())

Arguments

edgelistfiles Character vector of files to be processed. Each entry should be a machine-
interpretable path to an edgelist file. See Details for expected format.

outfile File to write final clusters to. Optional, defaults to a temporary file.
mode String specifying whether edges should be interpreted as undirected (default) or

directed. Can be "undirected", "directed", or an unambiguous abbreviation.
add_self_loops Should self loops be added to the network? If TRUE, adds self loops of weight

1.0 to all vertices. If set to numeric value w, adds self loops of weight w to all
nodes.

ignore_weights Should weights be ignored? If TRUE, all edges will be treated as an edge of
weight 1. Must be set to TRUE if any of edgelistfiles are two-column tables
(start->end only, lacking a weights column).

normalize_weights

Should weights be normalized? If TRUE, each vertex’s edge weights are normal-
ized such that the sum of outgoing edge weights is 1. This normalization is done
after adding self loops.

40 ExoLabel

iterations Maximum number of times to process each node. If set to zero or NULL, auto-
matically uses the square root of the max node degree. See "Algorithm Conver-
gence" for more information.

inflation Inflation parameter for edges. See "Algorithm Convergence" below for a de-
scription of this parameter. Higher values speed up algorithm convergence but
produce smaller clusters. Defaults to 1.05; set to 1.0 to disable inflation.

return_table Should result of clustering be returned as a file, or a data.frame object? If
FALSE, returns a character vector corresponding to the path of outfile. If TRUE,
parses outfile using read.table and returns the result. Not recommended for
very large graphs.

consensus_cluster

Should consensus clustering be used? If TRUE, runs the clustering algorithm
multiple times and forms a consensus clustering based on the agreement of each
run. Can be set to a vector of doubles to control the number of iterations. See
"Consensus Clustering" below for more information.

use_fast_sort Should files be sorted using two files or in-place? If TRUE, ExoLabel will per-
form its file sorting functions using a second temporary file. This is faster than
the in-place sort, but consumes twice the amount of disk space. The relative disk
consumption is about the same size as the input graph for use_fast_sort=FALSE,
and about double the size of the input graph for use_fast_sort=TRUE (see
"Memory Consumption" and the last paragraph of "Warning" below). Set to
TRUE if you’re not worried about disk utilization.

verbose Should status messages (output, progress, etc.) be displayed while running?

sep Character that separates entries on a line in each file in edgelistfiles. De-
faults to tab, as would be expected in a .tsv formatted file. Set to ',' for a
.csv file.

tempfiledir Character vector corresponding to the location where temporary files used dur-
ing execution should be stored. Defaults to R’s tempdir.

Details

Very large graphs require too much RAM for processing on some machines. In a graph containing
billions of nodes and edges, loading the entire structure into RAM is rarely feasible. This im-
plementation uses disk space for storing representations of each graph. While this is slower than
computing on RAM, it allows this algorithm to scale to graphs of enormous size while only using
a comparatively small amount of memory. See "Memory Consumption" for details on the total
disk/memory consumption of ExoLabel.

This function expects a set of edgelist files, provided as a vector of filepaths. Each entry in the file
is expected to be in the following:

VERTEX1<sep>VERTEX2<sep>WEIGHT<linesep>

This line defines a single edge between vertices VERTEX1 and VERTEX2 with weight WEIGHT. VERTEX1
and VERTEX2 are strings corresponding to vertex names, WEIGHT is a numeric value that can be in-
terpreted as a double. The separators <sep> and <linesep> correspond to the arguments sep and
linesep, respectively. The default arguments work for standard .tsv formatting, i.e., a file of three
columns of tab-separated values.

If ignore_weight=TRUE, the file can be formatted as:

ExoLabel 41

VERTEX1<sep>VERTEX2<linesep>

Note that the v1 v2 w format is still accepted for ignore_weight=FALSE, but the specified weights
will be ignored.

Value

If return_table=TRUE, returns a data.frame object with two columns. The first column contains
the name of each vertex, and the second column contains the cluster it was assigned to.

If return_table=FALSE, returns a character vector of length 1. This vector contains the path to the
file where clusters were written to. The file is formatted as a .tsv, with each line containing two
tab separated columns (vertex name, assigned cluster)

Algorithm Convergence

One of the main issues of Label Propagation algorithms is that they can fail to converge. Consider
an unweighted directed graph with four nodes connected in a loop. That is, A->B, B->C, C->D,
D->A. If A,C are in cluster 1 and B,D are in cluster 2, this algorithm could keep processing all the
nodes in a loop and never converge. To solve this issue, we introduce two measures for convergence:
inflation and iterations.

iterations is the simpler parameter to understand. If iterations=x, then we only allow the
algorithm to process each node x times. Once a given node has been seen x times, it is no longer
updated.

inflation gradually increases the influence of stronger weighted edges as we see a node more. In
other words, the more often we see a node, the more bias we add towards its strongest weighted
edges. For each node, we use the following weighting:

w′ = w1+log2(n−1)

Here w is the original edge weight, w′ is the new edge weight, and n is the number of times we’ve
already processed the node. After this transformation, the edge weights are renormalized, meaning
that large weights tend to get larger, and small weights tend to get smaller. Logarithms prevent the
exponents from growing too large, and base 2 is chosen for computational efficiency.

Consensus Clustering

Consensus clustering can be enabled by setting consensus_cluster=TRUE. Consensus clustering
runs ExoLabel on the input graph multiple times, transforming weight values according to a sigmoid
function. By default, this runs nine times for sigmoids with scale 0.5 and shape c(0,0.2,0.4,0.6,0.8,1.0,1.33,1.67,2.0),
collapsing weights below 0.1 to zero. The resulting clusters form a network such that the edge
weight between any two nodes connected in the initial graph is the proportion of clusters they
shared over clustering runs. This network is used for a final label propagation run, which identifies
the consensus clusters. Users can specify a numeric vector as input to consensus_cluster, which
will override the default shape parameters and number of iterations.

Warning

While this algorithm can scale to very large graphs, it does have some internal limitations. First,
nodes must be comprised of no more than 254 characters. If this limitation is restrictive, please
feel free to contact me. Alternatively, you can increase the size yourself by changing the definition

42 ExoLabel

of MAX_NODE_NAME_SIZE in src/OnDiskLP.c. This limitation is provided to decrease memory
overhead and improve runtime, but arbitrary values are possible.

Second, nodes are indexed using 54-bit unsigned integers. This means that the maximum possible
number of nodes available is 2^54-1, which is about 1.8 quadrillion. As with character limita-
tions, feel free to contact me if this is too restrictive. Alternatively, you can decrease the size of
BITS_FOR_WEIGHT in src/OnDiskLP.c, but note that this value determines how many bits to use to
represent weights internally, so lower values will lead to more error.

Third, this algorithm uses disk space to store large objects. As such, please ensure you have suffi-
cient disk space for the graph you intend to process. I’ve tried to put safeguards in the code itself,
but funky stuff can happen when the OS runs out of space. Use EstimateExoLabel to estimate
the disk consumption of your graph, and see "Memory Consumption" for more details on how the
total disk/memory consumption is calculated. Note that using use_fast_sort=TRUE will double
the maximal disk consumption of the algorithm.

Memory Consumption

Let v be the number of unique nodes, d the average outdegree of nodes, and l the average length of
node labels. Note that the number of edges e is equivalent to dv.

Specific calculations for memory/disk consumption are detailed below. In summary, the absolute
worst case memory consumption is roughly (24l+16)v bytes, and the maximum disk consumption
during computation is 16dv bytes (or 32dv bytes if use_fast_sort=TRUE). The final table returned
consumes (2 + l + log10 v)v bytes.

ExoLabel builds a trie to keep track of vertex names. Each internal node of the trie consumes 24
bytes, and each leaf node consumes 16 bytes. The lowest possible RAM consumption of the trie
(if every label is length l and shares the same prefix of length l − 1) is roughly 40v bytes, and the
maximum RAM consumption (if no two node labels have any prefix in common) is (24l + 16)v
bytes. We can generalize this to estimate the total memory consumption as roughly (24(l−p)+16)v,
where p is the average length of common prefix between any two node labels.

ExoLabel also uses a number of internal caches to speed up read/writes from files. These caches
take around 200MB of RAM in total. Note that this calculation does not include the RAM required
for R itself, which is on the order of 300MB on my machine. It also uses an internal queue for
processing nodes, which consumes roughly 10v bytes, and an internal index of size 8v bytes.

As for disk space, ExoLabel transforms the graph into a CSR-compressed network, which is split
across three files: a header, a neighbors list, and a weights list. The header file contains v+1 entries
of 8 bytes, and the other two files consume a total of 12 bytes per outgoing edge. The number of
edges to record is vd. Thus, the total disk consumption in bytes is 8(v + 1) + 12vd ≈ 8v + 12dv.
However, the initial reading of the edges requires 16 bytes per edge, resulting in a maximum disk
consumption of 16dv (since d > 2 for most graphs). If use_fast_sort=TRUE, this edge reading
maximally consumes 32 bytes per edge (a maximum disk consumption of 32dv).

The final table returned is a tab-separated table containing vertex names and cluster numbers in
human-readable format. Each line consumes at most l + 2 + log10 v bytes. In the worst case,
the number of clusters is equal to the number of vertices, which have log10 v digits. The average
number of digits is close to the number of digits of the largest number due to how number of digits
scale with numbers. The extra two bytes are for the tab and newline characters. Thus, the total size
of the file is at most (2 + l + log10 v)v bytes. We remove all intermediate files prior to outputting
clusters, so in practical cases this should be smaller than intermediate disk consumption.

ExpandDiagonal 43

Author(s)

Aidan Lakshman <AHL27@pitt.edu>

References

Traag, V.A., Subelj, L. Large network community detection by fast label propagation. Sci Rep 13,
2701 (2023). https://doi.org/10.1038/s41598-023-29610-z

See Also

EstimateExoLabel

Examples

num_verts <- 20L
num_edges <- 20L
all_verts <- sample(letters, num_verts)
all_edges <- vapply(seq_len(num_edges),

\(i) paste(c(sample(all_verts, 2L),
as.character(round(runif(1),3))),

collapse='\t'),
character(1L))

edgefile <- tempfile()
if(file.exists(edgefile)) file.remove(edgefile)
writeLines(all_edges, edgefile)
res <- ExoLabel(edgefile, return_table=TRUE)
print(res)

ExpandDiagonal Attempt to expand blocks of paired features in a PairSummaries ob-
ject.

Description

Attempt to expand blocks of paired features in a PairSummaries object.

Usage

ExpandDiagonal(SynExtendObject,
DataBase01,
InheritConfidence = FALSE,
GapTolerance = 100L,
DropSingletons = FALSE,
UserConfidence = list("PID" = 0.3),
Processors = 1,
Verbose = FALSE)

44 ExpandDiagonal

Arguments

SynExtendObject

An object of class PairSummaries.

DataBase01 A character string pointing to a SQLite database, or a connection to a DECIPHER
database.

InheritConfidence

A logical indicating whether or not to inheret the user specified column-value
pairs assigned to the input object.

GapTolerance Integer value indicating the diff between feature IDs that can be tolerated to
view features as part of the same block. Set by default to 100L.

DropSingletons Ignore solo pairs when planning expansion routes. Set to FALSE by default.

UserConfidence A named list of length 1 where the name identifies a column of the PairSummaries
object, and the value identifies a user confidence. To be retained, a pair evaluated
for expansion must be above all user specified confidences.

Processors An integer value indicating how many processors to supply to AlignPairs.
Supplying NULL will cause detection and use of all available cores.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

ExpandDiagonal uses a naive expansion algorithm to attempt to fill in gaps in blocks of paired
features and to attempt to expand blocks of paired features.

Value

An object of class PairSummaries.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries, NucleotideOverlap, link{SubSetPairs}, FindSynteny

Examples

library(RSQLite)
DBPATH <- system.file("extdata",

"Endosymbionts_v02.sqlite",
package = "SynExtend")

tmp <- tempfile()
system(command = paste("cp",

DBPATH,
tmp))

DBCONN <- dbConnect(SQLite(), tmp)

ExtractBy 45

data("Endosymbionts_LinkedFeatures", package = "SynExtend")
PrepareSeqs(SynExtendObject = Endosymbionts_LinkedFeatures,

DataBase01 = DBCONN,
Verbose = TRUE)

SummarizedPairs <- SummarizePairs(SynExtendObject = Endosymbionts_LinkedFeatures,
DataBase01 = DBCONN,
Verbose = TRUE)

ExpandedPairs <- ExpandDiagonal(SynExtendObject = SummarizedPairs,
DataBase01 = DBCONN,
Verbose = TRUE)

dbDisconnect(DBCONN)
unlink(tmp)

ExtractBy Extract and organize DNAStringSetss.

Description

Return organized DNAStringSets based on three currently supported object combinations. First re-
turn a single DNAStringSet of feature sequences from a DFrame of genecalls and a DNAStingSet of
the source assembly. Second return a list of DNAStringSets of predicted pairs from a PairSummaries
object and a character string of the location of a DECIPHER SQLite database. Third return a list of
DNAStringSets of predicted single linkage communities from a PairSummaries object, a char-
acter string of the location of a DECIPHER SQLite database, and a list of identifiers generated by
DisjointSet.

Usage

ExtractBy(x,
y,
z,
Verbose = FALSE)

Arguments

x A PairSummaries object, or if y is a DNAStringSet, a DFrame of gene calls
such as one generated by gffToDataFrame.

y A character vector of length 1 indicating the location of a DECIPHER SQLite
database. Or, if x is a DFrame, a DNAStringSet of the assembly the gene calls
are called from.

z Optional; a list of identifiers generated by DisjointSet. Or any list built along
a similar format with identifiers paired to the PairSummaries object.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
FALSE.

46 FastQFromSRR

Details

All sequences are forced into the same direction based on the Strand column supplied by either the
gene calls DFrame specified by x, or the GeneCalls attribute of the PairSummaries object specified
by y.

Value

Return a DNAStringSet, or list of DNAStringSets arranged depending upon the objects supplied.
See description.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, PairSummaries, DisjointSet

Examples

DBPATH <- system.file("extdata",
"Endosymbionts_v02.sqlite",
package = "SynExtend")

data("Endosymbionts_Pairs03", package = "SynExtend")
data("Endosymbionts_Sets", package = "SynExtend")

extract the first 10 disjoint sets
Sets <- ExtractBy(x = Endosymbionts_Pairs03,

y = DBPATH,
z = Endosymbionts_Sets[1:10],
Verbose = TRUE)

extract just the pairs
Sets <- ExtractBy(x = Endosymbionts_Pairs03,

y = DBPATH,
Verbose = TRUE)

FastQFromSRR Get Sequencing Data from the SRA

Description

Get sequencing data from the SRA.

FastQFromSRR 47

Usage

FastQFromSRR(SRR,
ARGS = list("--gzip" = NULL,

"--skip-technical" = NULL,
"--readids" = NULL,
"--read-filter" = "pass",
"--dumpbase" = NULL,
"--split-3" = NULL,
"--clip" = NULL),

KEEPFILES = FALSE)

Arguments

SRR A character vector of length 1 representing an SRA Run Accession, such as one
that would be passed to the prefetch, fastq-dump, or fasterq-dump functions
in the SRAToolkit.

ARGS A list representing key and value sets used to construct the call to fastq-dump,
multi-argument values are passed to paste directly and should be structured
accordingly.

KEEPFILES Logical indicating whether or not keep the downloaded fastq files outside of the
R session. If TRUE, downloaded files will be moved to R’s working directory
with the default names assigned by fastq-dump. If FALSE - the default, they are
removed and only the list of QualityScaledDNAStringSets returned by the
function are retained.

Details

FastQFromSRR is a barebones wrapper for fastq-dump, it is set up for convenience purposes only
and does not add any additional functionality. Requires a functioning installation of the SRAtoolkit.

Value

A list of QualityScaledDNAStringSets. The composition of this list will be determined by
fastq-dump’s splitting arguments.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

Examples

x <- "ERR10466327"
y <- FastQFromSRR(SRR = x)

48 FindSets

FindSets Find all single linkage clusters in an undirected pairs list.

Description

Take in a pair of vectors representing the columns of an undirected pairs list and return the single
linkage clusters.

Usage

FindSets(p1,
p2,
Verbose = FALSE)

Arguments

p1 Column 1 of a pairs matrix or list.

p2 Column 2 of a pairs matrix or list.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

FindSets uses a version of the union-find algorithm to collect single linkage clusters from a pairs
list. Currently meant to be used inside a wrapper function, but left exposed for user convenience.

Value

A two column matrix with the first column being input nodes, and the second the node representing
a single linkage cluster.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries

Examples

set.seed(1986)
m <- cbind(as.integer(sample(30, size = 25,

replace = TRUE)),
as.integer(sample(35, size = 25,

replace = TRUE)))

Levs <- unique(c(m[, 1],

FitchParsimony 49

m[, 2]))
m <- cbind("1" = as.integer(factor(x = m[, 1L],

levels = Levs)),
"2" = as.integer(factor(x = m[, 2L],

levels = Levs)))
z <- FindSets(p1 = m[, 1],

p2 = m[, 2])

FitchParsimony Calculate ancestral states using Fitch Parsimony

Description

Ancestral states for binary traits can be inferred from presence/absence patterns at the tips of a den-
drogram using Fitch Parsimony. This function works for an arbitrary number of states on bifurcating
dendrogram objects.

Usage

FitchParsimony(dend, num_traits, traits_list,
initial_state=rep(0L,num_traits),
fill_ambiguous=TRUE)

Arguments

dend An object of class 'dendrogram'
num_traits The number of traits to inferred, as an integer.
traits_list A list of character vectors, where the i’th entry corresponds to the leaf labels

that have the trait i.
initial_state The state assumed for the root node. Set to NULL to disable autofilling the root

state.
fill_ambiguous If TRUE, states that remain ambiguous after completion of the algorithm are filled

in randomly.

Details

Fitch Parismony allows for fast inference of ancestral states of binary traits. The algorithm proceeds
in three steps.
First, traits are inferred upwards based on child nodes. If the child nodes have the same state (1/1
or 0/0), then the parent node is also set to that state. If the states are different, the parent node is set
to 2, denoting an ambiguous entry. If one child is ambiguous and the other is not, the parent is set
to the non-ambiguous entry.
Second, traits are inferred downward to attempt to fill in ambiguous entries. If a node is not am-
biguous but its child is, the child’s state is set to the parent state. If specified, the root node’s state
is set to initial_state prior to this step.
Third, traits that remain ambiguous are optionally filled in (only if fill_ambiguous is set to TRUE).
This proceeds by randomly setting ambiguous traits to either 1 or 0.
The result is stored in the FitchState attribute within each node.

50 FitchParsimony

Value

A dendrogram with attribute FitchState set for each node, where this attribute is a binary vector
of length num_traits.

Note

It’s FitchParsimony because this implementation is entirely in R, as opposed to internal SynExtend
methods that utilize a slightly faster C-based implementation that is not user-exposed.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Fitch, Walter M. Toward defining the course of evolution: minimum change for a specific tree
topology. Systematic Biology, 1971. 20(4): p. 406-416.

Examples

d <- as.dendrogram(hclust(dist(USArrests), "ave"))
labs <- labels(d)

Defining some presence absence patterns
set.seed(123L)
pa_1 <- sample(labs, 15L)
pa_2 <- sample(labs, 20L)

inferring ancestral states
fpd <- FitchParsimony(d, 2L, list(pa_1, pa_2))

Checking a state
attr(fpd[[1L]], 'FitchState')

Visualizing the results for the first pattern
Tips show P/A patterns, edges show gain/loss (green/red)
fpd <- dendrapply(fpd, \(x){

ai <- 1L
s <- attr(x, 'FitchState')
l <- list()

if(is.leaf(x)){
coloring tips based presence/absence
l$col <- ifelse(s[ai]==1L, 'green', 'red')
l$pch <- 19
attr(x, 'nodePar') <- l

} else {
coloring edges based on gain/loss
for(i in seq_along(x)){

sc <- attr(x[[i]], 'FitchState')
if(s[ai] != sc[ai]){

Generic 51

l$col <- ifelse(s[ai] == 1L, 'red', 'green')
} else {

l$col <- 'black'
}
attr(x[[i]], 'edgePar') <- l

}
}

x
}, how='post.order')
plot(fpd, leaflab='none')

Generic Model for predicting PID based on k-mer statistics

Description

Though the function PairSummaries provides an argument allowing users to ask for alignments,
given the time consuming nature of that process on large data, models are provided for predicting
PIDs of pairs based on k-mer statistics without performing alignments.

Usage

data("Generic")

Format

The format is an object of class “glm”.

Details

A model for predicting the PID of a pair of sequences based on the k-mers that were used to link
the pair.

Examples

data(Generic)

52 gffToDataFrame

gffToDataFrame Generate a DataFrame of gene calls from a gff3 file

Description

Generate a DataFrame of gene calls from a gff3 file

Usage

gffToDataFrame(GFF,
AdditionalAttrs = NULL,
AdditionalTypes = NULL,
RawTableOnly = FALSE,
Verbose = FALSE)

Arguments

GFF A url or filepath specifying a gff3 file to import

AdditionalAttrs

A vector of character strings to designate the attributes to pull. Default Attributes
include: “ID”, “Parent”, “Name”, “gbkey”, “gene”, “product”, “protein_id”,
“gene_biotype”, “transl_table”, and “Note”.

AdditionalTypes

A vector of character strings to query from the the “Types” column. Default
types are limited to “Gene” and “Pseudogene”, but any possible entry for “Type”
in a gff3 format can be added, such as “rRNA”, or “CRISPR_REPEAT”.

RawTableOnly Logical specifying whether to return the raw imported GFF without complex
parsing. Remains as a holdover from function construction and debugging. For
simple gff3 import see rtracklayer::import.

Verbose Logical specifying whether to print a progress bar and time difference.

Details

Import a gff file into a rectangular parsable object.

Value

A DataFrame with relevant information extracted from a GFF.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

LinkedPairs 53

Examples

ImportedGFF <- gffToDataFrame(GFF = system.file("extdata",
"GCF_021065005.1_ASM2106500v1_genomic.gff.gz",

package = "SynExtend"),
Verbose = TRUE)

LinkedPairs Tables of where syntenic hits link pairs of genes

Description

Syntenic blocks describe where order is shared between two sequences. These blocks are made up
of exact match hits. These hits can be overlayed on the locations of sequence features to clearly
illustrate where exact sequence similarity is shared between pairs of sequence features.

Usage

S3 method for class 'LinkedPairs'
print(x,

quote = FALSE,
right = TRUE,
...)

Arguments

x An object of class LinkedPairs.

quote Logical indicating whether to print the output surrounded by quotes.

right Logical specifying whether to right align strings.

... Other arguments for print.

Details

Objects of class LinkedPairs are stored as square matrices of list elements with dimnames derived
from the dimnames of the object of class ”Synteny” from which it was created. The diagonal of
the matrix is only filled if OutputFormat ”Comprehensive” is selected in NucleotideOverlap,
in which case it will be filled with the gene locations supplied to GeneCalls. The upper triangle
is always filled, and contains location information in nucleotide space for all syntenic hits that link
features between sequences in the form of an integer matrix with named columns. ”QueryGene” and
”SubjectGene” correspond to the integer rownames of the supplied gene calls. ”QueryIndex” and
”SubjectIndex” correspond to ”Index1” and ”Index2” columns of the source synteny object position.
Remaining columns describe the exact positioning and size of extracted hits. The lower triangle is
not filled if OutputFormat ”Sparse” is selected and contains relative displacement positions for the
’left-most’ and ’right-most’ hit involved in linking the particular features indicated in the related
line up the corresponding position in the upper triangle.

The object serves only as a simple package for input data to the PairSummaries function, and as
such may not be entirely user friendly. However it has been left exposed to the user should they find
this data interesting.

54 MakeBlastDb

Value

An object of class ”LinkedPairs”.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

MakeBlastDb Create a BLAST Database from R

Description

Wrapper to create BLAST databases for subsequent queries using the commandline BLAST tool
directly from R. Can operate on an XStringSet or a FASTA file.

This function requires the BLAST+ commandline tools, which can be downloaded here.

Usage

MakeBlastDb(seqs, dbtype=c('prot', 'nucl'),
dbname=NULL, dbpath=NULL,
extraArgs='', createDirectory=FALSE,
verbose=TRUE)

Arguments

seqs Sequence(s) to create a BLAST database from. This can be either an XStringSet
or a path to a FASTA file.

dbtype Either 'prot' for amino acid input, or 'nucl' for nucleotide input.

dbname Name of the resulting database. If not provided, defaults to a random string
prefixed by blastdb.

dbpath Path where database should be created. If not provided, defaults to TMPDIR.

extraArgs Additional arguments to be passed to the query executed on the command line.
This should be a single character string.

createDirectory

Should a directory be created for the database if it doesn’t exist? If FALSE, the
function will throw an error instead of creating a directory.

verbose Should output be displayed?

Details

This offers a quick way to create BLAST databases from R. This function essentially wraps the
makeblastdb commandline function. All arguments supported by makeblastdb are supported in
the extraArgs argument.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

MoranI 55

Value

Returns a length 2 named character vector specifying the name of the BLAST database and the path
to it.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

BlastSeqs

Examples

#

MoranI Moran’s I Spatial Autocorrelation Index

Description

Calculates Moran’s I to measure spatial autocorrelation for a set of signals dispersed in space.

Usage

MoranI(values, weights, alternative='two.sided')

Arguments

values Numeric vector containing signals for each point in space.

weights Distances between each point in space. This should be a numeric object of class
dist with Size attribute equivalent to the length of values.

alternative For hypothesis testing against the null of no spatial correlation, how should a p-
value be calculated? Should be one of c("two.sided", "less", "greater"),
or an unambiguous abbreviation.

Details

Moran’s I is a measure of how much the spatial arrangement of a set of datapoints correlates with
the value of each datapoint. The index takes a value in the range [−1, 1], with values close to 1
indicating high correlation between location and value (points have increasingly similar values as
they increase in proximity), values close to -1 indicating anticorrelation(points have increasingly
different values as they increase in proximity), and values close to 0 indicating no correlation.

The value itself is calculated as:

I =
N

W

∑N
i

∑N
j wij(xi − x̄)(xj − x̄)∑N

i (xi − x̄)2

56 MoranI

Here, N is the number of points, wij is the distance between points i and j, W =
∑

i,j wij (the
sum of all the weights), xi is the value of point i, and x̄ is the sample mean of the values.

Moran’s I has a closed form calculation for variance and expected value, which are calcalated within
this function. The full form of the variance is fairly complex, but all the equations are available for
reference here.

A p-value is estimated using the expected value and variance using a null hypothesis of no spatial
autocorrelation, and the alternative hypothesis specified in the alternative argument. Note that
if fewer than four datapoints are supplied, the variance of Moran’s I is infinite. The function will
return a standard deviation of Inf and a p-value of 1 in this case.

Value

A list object containing the following named values:

• observed: The value of Moran’s I (numeric in the range [−1, 1]).

• expected: The expected value of Moran’s I for the input data.

• sd: The standard deviation of Moran’s I for the input data.

• p.value: The p-value for the input data, calculated with the alternative hypothesis as specified
in alternative.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Moran, P. A. P., Notes on Continuous Stochastic Phenomena. Biometrika, 1950. 37(1): 17-23.

Gittleman, J. L. and M. Kot., Adaptation: Statistics and a Null Model for Estimating Phylogenetic
Effects. Systematic Zoology, 1990. 39:227-241.

Examples

Make a distance matrix for a set of 50 points
These are just random numbers in the range [0.1,2]
NUM_POINTS <- 50
distmat <- as.dist(matrix(runif(NUM_POINTS**2, 0.1, 2),

ncol=NUM_POINTS))

Generate some random values for each of the points
vals <- runif(NUM_POINTS, 0, 3)

Calculate Moran's I
MoranI(vals, distmat, alternative='two.sided')

effect size should be pretty small
and p-value close to 0.5
since this is basically random data

https://en.wikipedia.org/wiki/Moran%27s_I#Expected_value

NucleotideOverlap 57

NucleotideOverlap Tabulating Pairs of Genomic Sequences

Description

A function for concisely tabulating where genomic features are connected by syntenic hits.

Usage

NucleotideOverlap(SyntenyObject,
GeneCalls,
LimitIndex = FALSE,
AcceptContigNames = TRUE,
Verbose = FALSE)

Arguments

SyntenyObject An object of class “Synteny” built from the FindSynteny in the package DECIPHER.

GeneCalls A named list of objects of class “DFrame” built from gffToDataFrame, ob-
jects of class “GRanges” imported from rtracklayer::import, or objects of
class “Genes” created from the DECIPHER function FindGenes. “DFrame”s built
by “gffToDataFrame” can be used directly, while “GRanges” objects may also
be used with limited functionality. Using a “GRanges” object will force all
alignments to nucleotide alignments. Objects of class “Genes” generated by
FindGenes function equivalently to those produced by gffToDataFrame. Us-
ing a “GRanges” object will force LimitIndex to TRUE.

LimitIndex Logical indicating whether to limit which indices in a synteny object to query.
FALSE by default, when TRUE only the first sequence in all selected identifiers
will be used. LimitIndex can be used to skip analysis of plasmids, or solely
query a single chromosome.

AcceptContigNames

Match names of contigs between gene calls object and synteny object. Where
relevant, the first white space and everything following are removed from contig
names. If “TRUE”, NucleotideOverlap assumes that the contigs at each position
in the synteny object and “GeneCalls” object are in the same order. Is automat-
ically set to TRUE when “GeneCalls” are of class “GRanges”.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

Builds a matrix of lists that contain information about linked pairs of genomic features.

58 PairSummaries

Value

An object of class “LinkedPairs”. “LinkedPairs” is fundamentally just a list in the form of a matrix.
The lower triangle of the matrix is populated with matrices that contain all kmer hits from the
“Synteny” object that link features from the “GeneCalls” object. The upper triangle is populated by
matrices of the summaries of those hits by feature. The diagonal is populated by named vectors of
the lengths of the contigs, much like in the “Synteny” object. The “LinkedPairs” object also contains
a “GeneCalls” attribute that contains the user supplied features in a slightly more trimmed down
form. This allows users to only need to supply gene calls once and not again in the “PairSummaries”
function.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class

Examples

data("Endosymbionts_GeneCalls", package = "SynExtend")
data("Endosymbionts_Synteny", package = "SynExtend")

Links <- NucleotideOverlap(SyntenyObject = Endosymbionts_Synteny,
GeneCalls = Endosymbionts_GeneCalls,
LimitIndex = FALSE,
Verbose = TRUE)

PairSummaries Summarize connected pairs in a LinkedPairs object

Description

Takes in a “LinkedPairs” object and gene calls, and returns a data.frame of paired features.

Usage

PairSummaries(SyntenyLinks,
DBPATH,
PIDs = FALSE,
Score = FALSE,
IgnoreDefaultStringSet = FALSE,
Verbose = FALSE,
Model = "Generic",
DefaultTranslationTable = "11",
AcceptContigNames = TRUE,
OffSetsAllowed = NULL,
Storage = 1,
...)

PairSummaries 59

Arguments

SyntenyLinks A LinkedPairs object. In previous versions of this function, a GeneCalls ob-
ject was also required, but this object is now carried forward from NucleotideOverlap
inside the LinkedPairs object.

DBPATH A SQLite connection object or a character string specifying the path to the
database file constructed from DECIPHER’s Seqs2DB function. This path is
always required as “PairsSummaries” always computes the tetramer distance
between paired sequences.

PIDs Logical indicating whether to provide a PID for each pair. If TRUE all pairs will
be aligned using DECIPHER’s AlignProfiles. This step can be time consum-
ing, especially for large numbers of pairs. Default is FALSE.

Score Logical indicating whether to provide a length normalized score with DECI-
PHER’s ScoreAlignment function. If TRUE all pairs will be aligned using DE-
CIPHER’s AlignProfiles. This step can be time consuming, especially for
large numbers of pairs. Default is FALSE.

IgnoreDefaultStringSet

Logical indicating alignment type preferences. If FALSE (the default) pairs that
can be aligned in amino acid space will be aligned as an AAStringSet. If TRUE
all pairs will be aligned in nucleotide space. For PairSummaries to align the
translation of a pair of sequences, both sequences must be tagged as coding in
the “GeneCalls” object, and be the correct width for translation.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Model A character string specifying a model to use to predict PIDs without perform-
ing an alignment. By default this argument is “Generic” specifying a generic
PID prediction model based on PIDs computed from a randomly selected set of
genomes. Currently no other models are included. Users may also supply their
own model of type “glm” if they so desire in the form of an RData file. This
model will need to take in some, or of the columns of statistics per pair that
PairSummaries supplies.

DefaultTranslationTable

A character used to set the default translation table for translate. Is passed to
getGeneticCode. Used when no translation table is specified in the “GeneCalls”
object.

AcceptContigNames

Match names of contigs between gene calls object and synteny object. Where
relevant, the first white space and everything following are removed from contig
names. If TRUE, PairSummaries assumes that the contigs at each position in the
synteny object and “GeneCalls” object are in the same order. Is automatically
set to TRUE when “GeneCalls” are of class “GRanges”. Is currently TRUE by
default.

OffSetsAllowed Defaults to NULL. Supplying an integer vector will indicate gap sizes to attempt
to fill. A value of 2 will attempt to span gaps of size 1. If a vector larger than 1 is
provided, i.e. c(2, 3), will attempt to query all gap sizes implied by the vector,
in this case gaps of size 1 and 2.

60 PairSummaries

Storage Numeric indicating the approximate size a user wishes to allow for holding
StringSets in memory to extract gene sequences, in “Gigabytes”. The lower
Storage is set, the more likely that PairSummaries will need to reaccess StringSets
when extracting gene sequences. The higher Storage is set, the more sequences
PairSummaries will attempt to hold in memory, avoiding the need to re-access
the source database many times. Set to 1 by default, indicating that PairSummaries
can store a “Gigabyte” of sequences in memory at a time.

... Arguments to be passed to AlignProfiles, and DistanceMatrix.

Details

The LinkedPairs object generated by NucleotideOverlap is a container for raw data that de-
scribes possible orthologous relationships, however ultimate assignment of orthology is up to user
discretion. PairSummaries generates a clear table with relevant statistics for a user to work with as
they choose. The option to align all pairs, though onerous can allow users to apply a hard threshold
to predictions by PID, while built in models can allow more expedient thresholding from predicted
PIDs.

Value

A data.frame of class “data.frame” and “PairSummaries” of paired genes that are connected by syn-
tenic hits. Contains columns describing the k-mers that link the pair. Columns “p1” and “p2” give
the location ids of the the genes in the pair in the form “DatabaseIdentifier_ContigIdentifier_GeneIdentifier”.
“ExactMatch” provides an integer representing the exact number of nucleotides contained in the
linking k-mers. “TotalKmers” provides an integer describing the number of distinct k-mers linking
the pair. “MaxKmer” provides an integer describing the largest k-mer that links the pair. A column
titled “Consensus” provides a value between zero and 1 indicating whether the kmers that link a
pair of features are in the same position in each feature, with 1 indicating they are in exactly the
same position and 0 indicating they are in as different a position as is possible. The “Adjacent”
column provides an integer value ranging between 0 and 2 denoting whether a feature pair’s direct
neighbors are also paired. Gap filled pairs neither have neighbors, or are included as neighbors. The
“TetDist” column provides the euclidean distance between oligonucleotide - of size 4 - frequences
between predicted pairs. “PIDType” provides a character vector with values of “NT” where either
of the pair indicates it is not a translatable sequence or “AA” where both sequences are translatable.
If users choose to perform pairwise alignments there will be a “PID” column providing a numeric
describing the percent identity between the two sequences. If users choose to predict PIDs using
their own, or a provided model, a “PredictedPID” column will be provided.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, NucleotideOverlap

Examples

this function will be deprecated soon,

PhyloDistance 61

please see the new SummarizePairs() function.
DBPATH <- system.file("extdata",

"Endosymbionts_v02.sqlite",
package = "SynExtend")

data("Endosymbionts_LinkedFeatures", package = "SynExtend")

Pairs <- PairSummaries(SyntenyLinks = Endosymbionts_LinkedFeatures,
PIDs = FALSE,
DBPATH = DBPATH,
Verbose = TRUE)

PhyloDistance Calculate Distance between Unrooted Phylogenies

Description

Calculates distance between two unrooted phylogenies using a variety of metrics.

Usage

PhyloDistance(dend1, dend2,
Method=c("CI", "RF", "KF", "JRF"),
RawScore=FALSE, JRFExp=2)

Arguments

dend1 An object of class dendrogram, representing an unrooted bifurcating phyloge-
netic tree.

dend2 An object of class dendrogram, representing an unrooted bifurcating phyloge-
netic tree.

Method Method to use for calculating tree distances. The following values are supported:
"CI", "RF", "KF", "JRF". See Details for more information.

RawScore If FALSE, returns distance between the two trees. If TRUE, returns the component
values used to calculate the distance. This may be preferred for methods like
GRF. See the pages specific to each algorithm for more information on what
values are reported.

JRFExp k-value used in calculation of JRF Distance. Unused if Method is not "JRF".

Details

This function implements a variety of tree distances, specified by the value of Method. The follow-
ing values are supported, along with links to documentation pages for each function:

• "RF": Robinson-Foulds Distance

• "CI": Clustering Information Distance

• "JRF": Jaccard-Robinson-Foulds Distance, equivalent to the Nye Distance Metric when JRFVal=1

62 PhyloDistance

• "KF": Kuhner-Felsenstein Distance

Information on each of these algorithms, how scores are calculated, and references to literature can
be found at the above links. Method "CI" is selected by default due to recent work showing this
method as the most robust tree distance metric under general conditions.

Value

Returns a normalized distance, with 0 indicating identical trees and 1 indicating maximal difference.
If the trees have no leaves in common, the function will return 1 if RawScore=FALSE, or c(0,NA,NA)
if RawScore=TRUE.

If RawScore=TRUE, returns a vector of the components used to calculate the distance. This is typi-
cally a length 3 vector, but specific details can be found on the description for each algorithm linked
above.

Note

Note that this function requires the input dendrograms to be labeled alike (ex. leaf labeled abc in
dend1 represents the same species as leaf labeled abc in dend2). Labels can easily be modified
using dendrapply.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

Robinson-Foulds Distance

Clustering Information Distance

Jaccard-Robinson-Foulds Distance

Kuhner-Felsenstein Distance

Examples

making some toy dendrograms
set.seed(123)
dm1 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))
dm2 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))

tree1 <- as.dendrogram(hclust(dm1))
tree2 <- as.dendrogram(hclust(dm2))

Robinson-Foulds Distance
PhyloDistance(tree1, tree2, Method="RF")

Clustering Information Distance
PhyloDistance(tree1, tree2, Method="CI")

Kuhner-Felsenstein Distance
PhyloDistance(tree1, tree2, Method="KF")

PhyloDistance-CIDist 63

Nye Distance Metric
PhyloDistance(tree1, tree2, Method="JRF", JRFExp=1)

Jaccard-Robinson-Foulds Distance
PhyloDistance(tree1, tree2, Method="JRF", JRFExp=2)

PhyloDistance-CIDist Clustering Information Distance

Description

Calculate distance between two unrooted phylogenies using mutual clustering information of branch
partitions.

Details

This function is called as part of PhyloDistance and calculates tree distance using the clustering
information approach first described in Smith (2020). This function iteratively pairs internal tree
branches of a phylogeny based on their similarity, then scores overall similarity as the sum of
these measures. The similarity score is then converted to a distance by normalizing by the average
entropy of the two trees. This metric has been demonstrated to outperform numerous other metrics
in capabilities; see the original publication cited in References for more information.

Users may wish to use the actual similarity values rather than a distance metric; the option to
specify RawScore=TRUE is provided for this case. Distance is calculated as M−S

M , where M =
1
2 (H1+H2), Hi is the entropy of the i’th tree, and S is the similarity score between them. As shown
in the original publication, this satisfies the necessary requirements to be considered a distance
metric. Setting RawScore=TRUE will instead return a vector with (S,H1, H2, p), where p is an
approximation for the two sided p-value of the result based on random simulations from Smith
(2020).

Value

Returns a normalized distance, with 0 indicating identical trees and 1 indicating maximal difference.
Note that branch lengths are not considered, so two trees with different branch lengths may return
a distance of 0.

If RawScore=TRUE, returns a named length 4 vector with the first entry the similarity score, sub-
sequent entries the entropy values for each tree, and the last entry the approximate p-value for the
result based on simulations.

If the trees have no leaves in common, the function will return 1 if RawScore=FALSE, and c(0, NA,
NA, NA) if TRUE.

Note

Note that this function requires the input dendrograms to be labeled alike (ex. leaf labeled abc in
dend1 represents the same species as leaf labeled abc in dend2). Labels can easily be modified
using dendrapply.

64 PhyloDistance-JRFDist

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Smith, Martin R. Information theoretic generalized Robinson–Foulds metrics for comparing phylo-
genetic trees. Bioinformatics, 2020. 36(20):5007-5013.

Examples

making some toy dendrograms
set.seed(123)
dm1 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))
dm2 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))

tree1 <- as.dendrogram(hclust(dm1))
tree2 <- as.dendrogram(hclust(dm2))

get RF distance
PhyloDistance(tree1, tree2, Method="CI")

get similarity score with individual entropies
PhyloDistance(tree1, tree2, Method="CI", RawScore=TRUE)

PhyloDistance-JRFDist Jaccard-Robinson-Foulds Distance

Description

Calculate JRF distance between two unrooted phylogenies.

Details

This function is called as part of PhyloDistance and calculates the Jaccard-Robinson-Foulds dis-
tance between two unrooted phylogenies. Each dendrogram is first pruned to only internal branches
implying a partition in the shared leaf set; trivial partitions (where one leaf set contains 1 or 0 leaves)
are ignored.

The total score is calculated by pairing branches and scoring their similarity. For a set of two
branches A,B that partition the leaves into (A1, A2) and (B1, B2) (resp.), the distance between the
branches is calculated as:

2− 2

(
|X ∩ Y |
|X ∪ Y |

)k

where X ∈ (A1, A2), Y ∈ (B1, B2) are chosen to maximize the score of the pairing, and k the
value of ExpVal. The sum of these scores for all branches produces the overall distance between
the two trees, which is then normalized by the number of branches in each tree.

PhyloDistance-JRFDist 65

There are a few special cases to this distance. If ExpVal=1, the distance is equivalent to the metric
introduced in Nye et al. (2006). As ExpVal approaches infinity, the value becomes close to the
(non-Generalized) Robinson Foulds Distance.

Value

Returns a normalized distance, with 0 indicating identical trees and 1 indicating maximal difference.

If RawScore=TRUE, returns a named length 3 vector with the first entry the summed distance score
over the branch pairings, and the subsequent entries the number of partitions for each tree.

If the trees have no leaves in common, the function will return 1 if RawScore=FALSE, and c(0, NA,
NA) if TRUE.

Note

Note that this function requires the input dendrograms to be labeled alike (ex. leaf labeled abc in
dend1 represents the same species as leaf labeled abc in dend2). Labels can easily be modified
using dendrapply.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Nye, T. M. W., Liò, P., & Gilks, W. R. A novel algorithm and web-based tool for comparing two
alternative phylogenetic trees. Bioinformatics, 2006. 22(1): 117–119.

Böcker, S., Canzar, S., & Klau, G. W.. The generalized Robinson-Foulds metric. Algorithms in
Bioinformatics, 2013. 8126: 156–169.

Examples

making some toy dendrograms
set.seed(123)
dm1 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))
dm2 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))

tree1 <- as.dendrogram(hclust(dm1))
tree2 <- as.dendrogram(hclust(dm2))

Nye Metric
PhyloDistance(tree1, tree2, Method="JRF", JRFExp=1)

Jaccard-RobinsonFoulds
PhyloDistance(tree1, tree2, Method="JRF", JRFExp=2)

Good approximation to RF Dist (note RFDist is much faster for this)
PhyloDistance(tree1, tree2, Method="JRF", JRFExp=1000)
PhyloDistance(tree1, tree2, Method="RF")

66 PhyloDistance-KFDist

PhyloDistance-KFDist Kuhner-Felsenstein Distance

Description

Calculate KF distance between two unrooted phylogenies.

Details

This function is called as part of PhyloDistance and calculates Kuhner-Felsenstein distance be-
tween two unrooted phylogenies. Each dendrogram is first pruned to only internal branches imply-
ing a partition in the shared leaf set; trivial partitions (where one leaf set contains 1 or 0 leaves) are
ignored. The total score is calculated as the sum of squared differences between lengths of branches
implying equivalent partitions. If a particular branch is unique to a given tree, it is treated as having
length 0 in the other tree. The final score is normalized by the sum of squared lengths of all internal
branches of both trees, resulting in a final distance that ranges from 0 to 1.

Value

Returns a normalized distance, with 0 indicating identical trees and 1 indicating maximal difference.

If the trees have no leaves in common, the function will return 1.

Note

Note that this function requires the input dendrograms to be labeled alike (ex. leaf labeled abc in
dend1 represents the same species as leaf labeled abc in dend2). Labels can easily be modified
using dendrapply.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Robinson, D.F. and Foulds, L.R. Comparison of phylogenetic trees. Mathematical Biosciences,
1987. 53(1–2): 131–147.

Kuhner, M. K. and Felsenstein, J. Simulation comparison of phylogeny algorithms under equal and
unequal evolutionary rates. Molecular Biology and Evolution, 1994. 11: 459–468.

Examples

making some toy dendrograms
set.seed(123)
dm1 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))
dm2 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))

tree1 <- as.dendrogram(hclust(dm1))
tree2 <- as.dendrogram(hclust(dm2))

PhyloDistance-RFDist 67

get KF distance
PhyloDistance(tree1, tree2, Method="KF")

PhyloDistance-RFDist Robinson-Foulds Distance

Description

Calculate RF distance between two unrooted phylogenies.

Details

This function is called as part of PhyloDistance and calculates Robinson-Foulds distance between
two unrooted phylogenies. Each dendrogram is first pruned to only internal branches implying a
partition in the shared leaf set; trivial partitions (where one leaf set contains 1 or 0 leaves) are ig-
nored. The total score is calculated as the number of unique partitions divided by the total number of
partitions in both trees. Setting RawScore=TRUE will instead return a vector with (Pshared, P1, P2),
corresponding to the shared partitions and partitions in the first and second trees (respectively).

This algorithm incorporates some optimizations from Pattengale et al. (2007) to improve computa-
tion time of the original fast RF algorithm detailed in Day (1985).

Value

Returns a normalized distance, with 0 indicating identical trees and 1 indicating maximal difference.
Note that branch lengths are not considered, so two trees with different branch lengths may return
a distance of 0.

If RawScore=TRUE, returns a named length 3 vector with the first entry the number of unique parti-
tions, and the subsequent entries the number of partitions for each tree.

If the trees have no leaves in common, the function will return 1 if RawScore=FALSE, and c(0, NA,
NA) if TRUE.

Note

Note that this function requires the input dendrograms to be labeled alike (ex. leaf labeled abc in
dend1 represents the same species as leaf labeled abc in dend2). Labels can easily be modified
using dendrapply.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

68 plot.EvoWeb

References

Robinson, D.F. and Foulds, L.R. Comparison of phylogenetic trees. Mathematical Biosciences,
1987. 53(1–2): 131–147.

Day, William H.E. Optimal algorithms for comparing trees with labeled leaves. Journal of classifi-
cation, 1985. 2(1): 7-28.

Pattengale, N.D., Gottlieb, E.J., and Moret, B.M. Efficiently computing the Robinson-Foulds metric.
Journal of computational biology, 2007. 14(6): 724-735.

Examples

making some toy dendrograms
set.seed(123)
dm1 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))
dm2 <- as.dist(matrix(runif(64, 0.5, 5), ncol=8))

tree1 <- as.dendrogram(hclust(dm1))
tree2 <- as.dendrogram(hclust(dm2))

get RF distance
PhyloDistance(tree1, tree2, Method="RF")

get number of unique splits per tree
PhyloDistance(tree1, tree2, Method="RF", RawScore=TRUE)

plot.EvoWeb Plot predictions in a EvoWeb object

Description

EvoWeb objects are outputted from predict.EvoWeaver.

This function plots the predictions in the object using a force-directed embedding of connections in
the adjacency matrix.

This function is still a work in progress.

Usage

S3 method for class 'EvoWeb'
plot(x, NumSims=10,

Gravity=0.05, Coulomb=0.1, Connection=5,
MoveRate=0.25, Cutoff=0.2, ColorPalette=topo.colors,
Verbose=TRUE, ...)

plot.EvoWeb 69

Arguments

x A EvoWeb object. See EvoWeb

NumSims Number of iterations to run the model for.

Gravity Strength of Gravity force. See ’Details’.

Coulomb Strength of Coulomb force. See ’Details’.

Connection Strength of Connective force. See ’Details’.

MoveRate Controls how far each point moves in each iteration.

Cutoff Cutoff value; if abs(val) < Cutoff, that Connection is shrunk to zero.

ColorPalette Color palette for graphing. Valid inputs are any palette available in palette.pals().
See palette for more info.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
TRUE.

... Additional parameters for consistency with generic.

Details

This function plots the EvoWeb object using a force-directed embedding. This embedding has three
force components:

• Gravity Force: Attractive force pulling nodes towards (0,0)

• Coulomb Force: Repulsive force pushing close nodes away from each other

• Connective Force: Tries to push node connections to equal corresponding values in the adja-
cency matrix

The parameters in the function are sufficient to get an embedding, though users are welcome to
try to tune them for a better visualization. This function is meant to aid with visualization of the
adjacency matrix, not for concrete analyses of clusters.

The function included in this release is early stage. Next release cycle will update this function with
an updated version of this algorithm to improve plotting, visualization, and runtime.

Value

No return value; creates a plot in the graphics window.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.EvoWeaver

EvoWeb

70 predict.EvoWeaver

Examples

exData <- get(data("ExampleStreptomycesData"))
ew <- EvoWeaver(exData$Genes)

Subset isn't necessary but is faster for a working example
Same w/ method='ExtantJaccard'
evoweb <- predict(ew, Method='ExtantJaccard', Subset=1:50)

plot(evoweb)

predict.EvoWeaver Make predictions with EvoWeaver objects

Description

This S3 method predicts pairwise functional associations between gene groups encoded in a EvoWeaver
object. This returns an object of type EvoWeb, which is essentially an adjacency matrix with some
extra S3 methods to make printing cleaner.

Usage

S3 method for class 'EvoWeaver'
predict(object, Method='Ensemble',

Subset=NULL, Processors=1L,
MySpeciesTree=SpeciesTree(object, Verbose=Verbose),
PretrainedModel="KEGG",
NoPrediction=FALSE,
ReturnDataFrame=TRUE,
Verbose=interactive(),
CombinePVal=TRUE, ...)

Arguments

object A EvoWeaver object

Method Method(s) to use for prediction. This can be a character vector with multiple en-
tries for predicting using multiple methods. See ’Details’ for more information.

Subset Subset of data to predict on. This can either be a vector or a 2xN matrix.
If a vector, prediction proceeds for all possible pairs of elements specified in the
vector (either by name, for character vector, or by index, for numeric vector).
For example, subset=1:3 will predict for pairs (1,2), (1,3), (2,3).
If a matrix, subset is interpreted as a matrix of pairs, where each row of the ma-
trix specifies a pair to evaluate. These can also be specifed by name (character)
or by index (numeric).
subset=rbind(c(1,2),c(1,3),c(2,3)) produces equivalent functionality to
subset=1:3.

predict.EvoWeaver 71

Processors Number of cores to use for methods that support multithreaded execution. Set-
ting to NULL or a negative value will use the value of detectCores(), or one
core if the number of available cores cannot be determined. See Note for more
information.

MySpeciesTree Phylogenetic tree of all genomes in the dataset. Required for Method=c('RPContextTree',
'GLDistance', 'CorrGL', 'MoransI', 'Behdenna'). 'Behdenna' requires
a rooted, bifurcating tree (other values of Method can handle arbitrary trees).
Note that EvoWeaver can automatically infer a species tree if initialized with
dendrogram objects.

PretrainedModel

A pretrained model for use with ensemble predictions. The default value is
"KEGG", corresponding to a built-in ensemble model trained on the KEGG MOD-
ULE database. Alternative values allowed are "CORUM", for a built-in ensemble
model trained on the CORUM database, or any user-trained model. See the
examples for how to train an ensemble method to pass to PretrainedModel.
Has no effect if Method != 'Ensemble'.

NoPrediction For Method='Ensemble', should data be returned prior to making predictions?
If TRUE, this will instead return a data.frame object with predictions from each
algorithm for each pair. This dataframe is typically used to train an ensemble
model.
If FALSE, EvoWeaver will return predictions for each pair (using user model if
provided or a built-in otherwise).

ReturnDataFrame

Logical indicating whether to return a data.frame object or a list of EvoWeb
objects. Defaults to TRUE. Setting this parameter to FALSE is not recommended
for typical users.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
TRUE.

CombinePVal Logical indicating whether to combine scores and p-values or to return them as
separate values. Defaults to TRUE.

... Additional parameters for other predictors and consistency with generic.

Details

predict.EvoWeaver wraps several methods to create an easy interface for multiple prediction
types. Method='Ensemble' is the default value, but each of the component analyses can also be
accessed. Common arguments to Method include:

• 'Ensemble': Ensemble prediction combining individual coevolutionary predictors. See Note
below.

• 'PhylogeneticProfiling': All Phylogenetic Profiling Algorithms used in the EvoWeaver
manuscript.

• 'PhylogeneticStructure': All EvoWeaver Phylogenetic Structure Methods

• 'GeneOrganization': All EvoWeaver Gene Organization Methods

• 'SequenceLevel': All EvoWeaver Sequence Level Methods used in the EvoWeaver manuscript.

72 predict.EvoWeaver

Additional information and references for each prediction algorithm can be found at the following
pages:

• EvoWeaver Phylogenetic Profiling Methods
• EvoWeaver Phylogenetic Structure Methods
• EvoWeaver Gene Organization Methods
• EvoWeaver Sequence-Level Methods

The standard return type is a data.frame object with one column per predictor and an additional
two columns specifying the genes in each pair. If ReturnDataFrame=FALSE, this returns a EvoWeb
object. See EvoWeb for more information. Use of this parameter is discouraged.

By default, EvoWeaver weights scores by their p-value to correct for spurious correlations. The
returned scores are raw_score*(1-p_value). If CombinePVal=FALSE, EvoWeaver will instead
return the raw score and the p-value separately. The resulting data.frame will have one column for
the raw score (denoted METHOD.score) and one column for the p-value (denoted METHOD.pval).
Note: p-values are recorded as (1-p). Not all methods support returning p-values separately
from the score; in this case, only a METHOD.score column will be returned.

Different methods require different types of input. The constructor EvoWeaver will notify the user
which methods are runnable with the given data. Method Ensemble automatically selects the meth-
ods that can be run with the given input data.

See EvoWeaver for more information on input data types.

Complete listing of all supported methods (asterisk denotes a method used in Ensemble, if possible):

• 'ExtantJaccard': Jaccard Index of Presence/Absence (P/A) profiles at extant leaves
• 'Hamming': Hamming similarity of P/A profiles
• * 'GLMI': MI of G/L profiles
• 'PAPV': 1-p_value of P/A profiles
• 'ProfDCA': Direct Coupling Analysis of P/A profiles
• 'Behdenna': Analysis of Gain/Loss events following Behdenna et al. (2016)
• 'CorrGL': Correlation of ancestral Gain/Loss events
• * 'GLDistance': Score-based method based on distance between inferred ancestral Gain/Loss

events
• * 'PAJaccard': Centered Jaccard distance of P/A profiles with conserved clades collapsed
• * 'PAOverlap': Conservation of ancestral states based on P/A profiles
• * 'RPMirrorTree': MirrorTree using Random Projection for dimensionality reduction
• * 'RPContextTree': MirrorTree with Random Projection correcting for species tree and P/A

conservation
• * 'GeneDistance': Co-localization analysis
• * 'MoransI': Co-localization analysis using Moran’s I for phylogenetic correction and sig-

nificance
• * 'OrientationMI': Mutual Information of Gene Relative Orientation
• * 'GeneVector': Correlation of distribution of sequence level residues following Zhao et al.

(2022)
• * 'SequenceInfo': Mutual information of sites in multiple sequence alignment

predict.EvoWeaver 73

Value

Returns a data.frame object where each row corresponds to a single prediction for a pair of gene
groups. The first two columns contain the gene group identifiers for each pair, and the remaining
columns contain each prediction.

If ReturnDataFrame=FALSE, the return type is a list of EvoWeb objects. See EvoWeb for more info.

Note

EvoWeaver’s publication used a random forest model from the randomForest package for predic-
tion. The next release of EvoWeaver will include multiple new built-in ensemble methods, but in
the interim users are recommended to rely on randomForest or neuralnet. Planned algorithms are
random forests and feed-forward neural networks. Feel free to contact me regarding other models
you would like to see added.

If NumCores is set to NULL, EvoWeaver will use one less core than is detected, or one core if
detectCores() cannot detect the number of available cores. This is because of a recurring is-
sue on my machine where the R session takes all available cores and is then locked out of forking
processes, with the only solution to restart the entire R session. This may be an issue specific to
ARM Macs, but out of an abundance of caution I’ve made the default setting to be slightly slower
but guarantee completion rather than risk bricking a machine.

If ReturnDataFrame=FALSE and CombinePVal=FALSE, the resulting EvoWeb objects will contain
values of type 'complex'. For each value, the real part denotes the raw score, and the imaginary
part denotes 1-p, with p the p-value.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

EvoWeaver

EvoWeb

EvoWeaver Phylogenetic Profiling Predictors

EvoWeaver Phylogenetic Structure Predictors

EvoWeaver Gene Organization Predictors

EvoWeaver Sequence-Level Predictors

Examples

##############
Prediction with built-in model and data
###############

set.seed(555L)
exData <- get(data("ExampleStreptomycesData"))
ew <- EvoWeaver(exData$Genes[1:50], MySpeciesTree=exData$Tree)

Subset isn't necessary but is faster for a working example

74 PrepareSeqs

evoweb1 <- predict(ew, Subset=1:2)

print out results as an adjacency matrix
if(interactive()) print(evoweb1)

###############
Training own ensemble model
###############

datavals <- evoweb1[,-c(1,2,10)]
actual_values <- sample(c(0,1), nrow(datavals), replace=TRUE)
This example just picks random numbers
Do not do this for your own models

Make sure the actual values correspond to the right pairs!
datavals[,'y'] <- actual_values
myModel <- glm(y~., datavals[,-c(1,2)], family='binomial')

testEvoWeaverObject <- EvoWeaver(exData$Genes[51:60], MySpeciesTree=exData$Tree)
evoweb2 <- predict(testEvoWeaverObject,

PretrainedModel=myModel)

Print result as a data.frame of pairwise scores
if(interactive()) print(evoweb2)

PrepareSeqs Add feature sequences to Decipher databases.

Description

Given a SynExtend object with a GeneCalls attribute, and a DECIPHER database, add sequence
tables named ’AAs’ and ’NTs’ to the database. The new tables contain all translatable sequences
indicated by the genecalls, and all nucleotide feature sequences.

Usage

PrepareSeqs(SynExtendObject,
DataBase01,
DefaultTranslationTable = "11",
Identifiers = NULL,
Verbose = FALSE)

Arguments

SynExtendObject

An object of class PairSummaries or of LinkedPairs. Object must have a
GeneCalls attribute.

DataBase01 A character string pointing to a SQLite database, or a connection to a DECIPHER
database.

RandForest 75

DefaultTranslationTable

A character vector of length 1 identifying the translation table to use if one is
not supplied in the GeneCalls attribute.

Identifiers By default NULL, but can be used to supply a vector of character identifiers for
returning a subset of prepared sequences.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

PrepareSeqs adds two tables to a DECIPHER database. One named ’AAs’ that contains all trans-
latable features, i.e. features with a coding length divisible by 3 and designated as coding. And
another named ’NTs’ which contains all features.

Value

An integer count of the number of feature sets added to the DECIPHER database.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

SummarizePairs, NucleotideOverlap, FindSynteny

Examples

DBPATH <- system.file("extdata",
"Endosymbionts_v02.sqlite",
package = "SynExtend")

data("Endosymbionts_LinkedFeatures", package = "SynExtend")
this will add seqs to the DB
PrepareSeqs(SynExtendObject = Endosymbionts_LinkedFeatures,
DataBase = DBPATH,
Verbose = TRUE)

RandForest Classification and Regression with Random Forests

Description

RandForest implements a version of Breiman’s random forest algorithm for classification and re-
gression.

76 RandForest

Usage

RandForest(formula, data, subset, verbose=interactive(),
weights, na.action,
method='rf.fit',
rf.mode=c('auto', 'classification', 'regression'),
contrasts=NULL, ...)

S3 method for class 'RandForest'
predict(object, newdata=NULL,

na.action=na.pass, ...)

Called internally by `RandForest`
RandForest.fit(x, y=NULL,

verbose=interactive(), ntree=10,
mtry=floor(sqrt(ncol(x))),
weights=NULL, replace=TRUE,
sampsize=if(replace) nrow(x) else ceiling(0.632*nrow(x)),
nodesize=1L, max_depth=NULL,
method=NULL,
terms=NULL,...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. See lm for more details.

data An optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which RandForest is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be NULL
or a numeric vector.

na.action a function which indicates what should happen when the data contain NAs. Cur-
rently experimental.

method currently unused.

rf.mode one of "auto", "classification", "regression" (or an unambiguous abbre-
viation), specifying the type of trees to build. If rf.mode="auto", the mode is
inferred based on the type of the response variable.

contrasts currently experimental; see lm.

... further arguments passed to RandForest.fit.

object an object of class 'RandForest' for prediction.

newdata new data to predict on, typically provided as a data.frame object.

verbose logical: should progress be displayed?

ntree number of decision trees to grow.

RandForest 77

mtry number of variables to try at each split.

replace logical; should data be sampled with replacement during training?

sampsize number of datapoints to sample for training each component decision tree.

nodesize number of datapoints to stop classification (see "Details")

max_depth maximum depth of component decision trees.

x used internally by RandForest.fit

y used internally by RandForest.fit

terms used internally by RandForest.fit

Details

RandForest implements a version of Breiman’s original algorithm to train a random forest model
for classification or regression. Random forests are comprised of a set of decision trees, each of
which is trained on a subset of the available data. These trees are individually worse predictors
than a single decision tree trained on the entire dataset. However, averaging predictions across the
ensemble of trees forms a model that is often more accurate than single decision trees while being
less susceptible to overfitting.

Random forests can either be trained for classification or regression. Classification forests are com-
prised of trees that assign inputs to a specific class. The output prediction is a vector comprised of
the proportion of trees in the forest that assigned the datapoint to each available class. Regresssion
forests are comprised of trees that assign each datapoint to a single continuous value, and the output
prediction is comprised of the mean prediction across all component trees. When rf.mode="auto",
the random forest will be trained in classification mode for response of type "factor", and in re-
gression mode for response of type "numeric".

Several parameters exist to tune the behavior of random forests. The ntree argument controls how
many decision trees are trained. At each decision point, the decision trees consider a random subset
of available variables–the number of variables to sample is controlled by mtry. Each decision tree
only sees a subset of available data to reduce its risk of overfitting. This subset is comprised of
sampsize datapoints, which are sampled with or without replacement according to the replace
argument.

Finally, the default behavior is to grow decision trees until they have fully classified all the data
they see for training. However, this may lead to overfitting. Decision trees can be limited to smaller
sizes by specifying the max_depth or nodesize arguments. max_depth refers to the depth of the
decision tree. Setting this value to n means that every path from the root node to a leaf node will be
at most length n. nodesize can be used to instead stop growing trees based on the size of the data
to be partitioned at each decision tree node. If nodesize=n, then if a decision point receives less
than n samples, it will stop trying to further split the data.

Classification forests are trained by maximizing the Gini Gain at each interior node. Split points
are determined with exhaustive search for small data sizes, or simulated annealing for larger sizes.
Regression forests are trained by maximizing the decrease in sum of squared error (SSE) if all
points in each partition are assigned their mean output value. Nodes stop classification when either
no partition improves the maximization metric (Gini Gain or decrease in SSE) or when the criteria
specified by nodesize / max_depth are met.

Some of the arguments provided are for consistency with the base lm function. Use caution chang-
ing any values referred to as "Experimental" above. NA values may cause unintended behavior.

78 RandForest

Value

An object of class 'RandForest', which itself contains a number of objects of class 'DecisionTree'
which can be used for prediction with predict.RandForest

Note

Generating a single decision tree model is possible by setting ntree=1 and sampsize=nrow(data).
'DecisionTree' objects do not currently support prediction.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

DecisionTree class

Examples

set.seed(199L)
n_samp <- 100L
AA <- rnorm(n_samp, mean=1, sd=5)
BB <- rnorm(n_samp, mean=2, sd=3)
CC <- rgamma(n_samp, shape=1, rate=2)
err <- rnorm(n_samp, sd=0.5)
y <- AA + BB + 2*CC + err

d <- data.frame(AA,BB,CC,y)
train_i <- 1:90
test_i <- 91:100
train_data <- d[train_i,]
test_data <- d[test_i,]

rf_regr <- RandForest(y~., data=train_data, rf.mode="regression", max_depth=5L)
if(interactive()){

Visualize one of the decision trees
plot(rf_regr[[1]])

}

classification
y1 <- y < -5
y2 <- y < 0 & y >= -5
y3 <- y < 5 & y >= 0
y4 <- y >= 5
y_cl <- rep(0L, length(y))
y[y1] <- 1L
y[y2] <- 2L

SelectByK 79

y[y3] <- 3L
y[y4] <- 4L
d$y <- as.factor(y)
train_data <- d[train_i,]
test_data <- d[test_i,]

rf_classif <- RandForest(y~., data=train_data, rf.mode="classification", max_depth=5L)
if(interactive()){

Visualize one of the decision trees for classification
plot(rf_classif[[1]])

}

SelectByK Predicted pair trimming using K-means.

Description

A relatively simple k-means clustering approach to drop predicted pairs that belong to clusters with
a PID centroid below a specified user threshold.

Usage

SelectByK(Pairs,
UserConfidence = 0.5,
ClusterScalar = 1,
MaxClusters = 15L,
ReturnAllCommunities = FALSE,
Verbose = FALSE,
ShowPlot = FALSE,
RetainHighest = TRUE)

Arguments

Pairs An object of class PairSummaries.

UserConfidence A numeric value greater than 0 and less than 1 that represents a minimum PID
centroid that users believe represents a TRUE predicted pair.

ClusterScalar A numeric value used to scale selection of how many clusters are used in kmeans
clustering. Total within-cluster sum of squares are fit to a right hyperbola, and
the half-max is used to select cluster number. “ClusterScalar” is multiplied by
the half-max to adjust cluster number selection.

MaxClusters Integer value indicating the largest number of clusters to test in a series of k-
means clustering tests.

ReturnAllCommunities

A logical value, if “TRUE”, function returns of a list where the second posi-
tion is a list of “PairSummaries” tables for each k-means cluster. By default
is “FALSE”, returning only a “PairSummaries” object of the retained predicted
pairs.

80 SelectByK

ShowPlot Logical indicating whether or not to plot the CDFs for the PIDs of all k-means
clusters for the determined cluster number.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

RetainHighest Logical indicating whether to retain the cluster with the highest PID centroid in
the case where the PID is below the specified user confidence.

Details

SelectByK uses a naive k-means routine to select for predicted pairs that belong to clusters whose
centroids are greater than or equal to the user specified PID confidence. This means that the con-
fidence is not a minimum, and that pairs with PIDs below the user confidence can be retained.
The sum of within cluster sum of squares is used to approximate “knee” selection with the user
supplied “ClusterScalar” value. By default, with a “ClusterScalar” value of 1 the half-max of a
right-hyperbola fitted to the sum of within-cluster sum of squares is used to pick the cluster number
for evaluation, “ClusterScalar” is multiplied by the half-max to tune cluster number selection. This
function is intended to be used at the genome-to-genome comparison level, and not say, at the level
of an all-vs-all comparison of many genomes.

Value

An object of class PairSummaries.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries, NucleotideOverlap, link{SubSetPairs}, FindSynteny

Examples

this function will be deprecated soon,
please see the new ClusterByK() function.

DBPATH <- system.file("extdata",
"Endosymbionts_v02.sqlite",
package = "SynExtend")

data("Endosymbionts_LinkedFeatures", package = "SynExtend")

Pairs <- PairSummaries(SyntenyLinks = Endosymbionts_LinkedFeatures,
PIDs = TRUE,
Score = TRUE,
DBPATH = DBPATH,
Verbose = TRUE)

Pairs02 <- SelectByK(Pairs = Pairs)

SequenceSimilarity 81

SequenceSimilarity Return a numeric value that represents the similarity between two
aligned sequences as determined by a provided subsitution matrix.

Description

Takes in a DNAStringSet or AAStringSet representing a pairwise alignment and a subsitution
matrix such as those present in PFASUM, and return a numeric value representing sequence similarity
as defined by the substitution matrix.

Usage

SequenceSimilarity(Seqs,
SubMat,
penalizeGapLetter = TRUE,
includeTerminalGaps = TRUE,
allowNegative = TRUE)

Arguments

Seqs A DNAStringSet or AAStringSet of length 2.

SubMat A named matrix representing a substitution matrix. If left “NULL” and “Seqs” is
a AAStringSet, the 40th “PFASUM” matrix is used. If left “NULL” and “Seqs”
is a DNAStringSet, a matrix with only the diagonal filled with “1”’s is used.

penalizeGapLetter

A logical indicating whether or not to penalize Gap-Letter matches. Defaults to
“TRUE”.

includeTerminalGaps

A logical indicating whether or not to penalize terminal matches. Defaults to
“TRUE”.

allowNegative A logical indicating whether or not allow negative scores. Defaults to “TRUE”.
If “FALSE” scores that are returned as less than zero are converted to zero.

Details

Takes in a DNAStringSet or AAStringSet representing a pairwise alignment and a subsitution
matrix such as those present in PFASUM, and return a numeric value representing sequence similarity
as defined by the substitution matrix.

Value

Returns a single numeric.

Author(s)

Erik Wright <ESWRIGHT@pitt.edu> Nicholas Cooley <npc19@pitt.edu>

82 simMat

See Also

AlignSeqs, AlignProfiles, AlignTranslation, DistanceMatrix

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package = "DECIPHER")
dna <- SearchDB(db, remove = "all")
alignedDNA <- AlignSeqs(dna[1:2])

DNAPlaceholder <- diag(15)
dimnames(DNAPlaceholder) <- list(DNA_ALPHABET[1:15],

DNA_ALPHABET[1:15])

SequenceSimilarity(Seqs = alignedDNA,
SubMat = DNAPlaceholder,
includeTerminalGaps = TRUE,
penalizeGapLetter = TRUE,
allowNegative = TRUE)

simMat Similarity Matrices

Description

The simMat object is an internally utilized class that provides similar functionality to the dist
object, but with matrix-like accessors.

Like dist, this object stores values as a vector, reducing memory by making use of assumed sym-
metry. simMat currently only supports numeric data types.

Usage

Create a blank sym object
simMat(VALUE, nelem, NAMES=NULL, DIAG=FALSE)

S3 method for class 'vector'
as.simMat(x, NAMES=NULL, DIAG=TRUE, ...)

S3 method for class 'matrix'
as.simMat(x, ...)

S3 method for class 'simMat'
print(x, ...)

S3 method for class 'simMat'
as.matrix(x, ...)

S3 method for class 'simMat'

simMat 83

as.data.frame(x, ...)

S3 method for class 'simMat'
Diag(x, ...)

S3 replacement method for class 'simMat'
Diag(x) <- value

Arguments

VALUE Numeric (or NA_real_) indicating placeholder values. A vector of values can
be provided for this function if desired.

nelem Integer; number of elements represented in the matrix. This corresponds to the
number of rows and columns of the object, so setting nelem=10 would produce
a 10x10 matrix.

NAMES Character (Optional); names for each row/column. If provided, this should be a
character vector of length equal to nelem.

DIAG Logical; Is the diagonal included in the data? If FALSE, the constructor generates
1s for the diagonal.

x Various; for print and Diag, the "simMat" object to print. For as.vector or
as.matrix, the vector or matrix (respectively). Note that as.matrix expects a
symmetric matrix–providing a non-symmetric matrix will take only the upper
triangle and produce a warning.

value Numeric; value(s) to replace diagonal with.

... Additional parameters provided for consistency with generic.

Details

The simMat object has a very similar format to dist objects, but with a few notable changes:

• simMat objects have streamlined print and show methods to make displaying large matrices
better. print accepts an additional argument n corresponding to the maximum number of
rows/columns to print before truncating.

• simMat objects support matrix-style get/set operations like s[1,] or s[1,3:5]

• simMat objects allow any values on the diagonal, rather than just zeros as in dist objects.

• simMat objects support conversion to matrices and data.frame objects

• simMat objects implement get/set Diag() methods. Note usage of capitalized Diag; this is to
avoid conflicts and weirdness with using base diag.

See the examples for details on using these features.

The number of elements printed when calling print or show on a simMat object is determined by
the "SynExtend.simMat" option.

84 simMat

Value

simMat and as.simMat return an object of class "simMat". Internally, the object stores the upper
triangle of the matrix similar to how dist stores objects.

The object has the following attributes (besides "class" equal to "simMat"):

nrow the number of rows in the matrix implied by the vector

NAMES the names of the rows/columns

as.matrix(s) returns the equivalent matrix to a "simMat" object.

as.data.frame(s) returns a data.frame object corresponding to pairwise similarities.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

Examples

Creating a blank simMat object initialized to zeros
s <- simMat(0, nelem=20)
s

Print out 5 rows instead of 10
print(s, n=5)

Create a simMat object with 5 entries from a vector
dimn <- 5
vec <- 1:(dimn*(dimn-1) / 2)
s1 <- as.simMat(vec, DIAG=FALSE)
s1

Here we include the diagonal
vec <- 1:(dimn*(dimn+1) / 2)
s2 <- as.simMat(vec, DIAG=TRUE)
s2

Subsetting
s2[1,]
s2[1,3:4]
all entries except first row
s2[-1,]
all combos not including 1
s2[-1,-1]

Replace values (automatically recycled)
s2[1,] <- 10
s2

Get/set diagonal
Diag(s1)
Diag(s1) <- 5
s1

subset.dendrogram 85

subset.dendrogram Subsetting dendrogram objects

Description

Subsets dendrogram objects based on leaf labels. Subsetting can either be by leaves to keep, or
leaves to remove.

NOTE: This man page is specifically for subset.dendogram, see ?base::subset for the generic
subset function defined for vectors, matrices, and data frames.

Usage

S3 method for class 'dendrogram'
subset(x, subset, invert=FALSE, ...)

Arguments

x An object of class 'dendogram'

subset A vector of labels to keep (see invert).

invert If set to TRUE, subset to only the leaves not in subset.

... Additional arguments for consistency with generic.

Value

An object of class 'dendrogram' corresponding to the subsetted tree.

Note

If none of the labels specified in the subset argument appear in the tree (or if all do when invert=TRUE),
a warning is thrown and an empty object of class 'dendrogram' is returned.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

subset

86 SubSetPairs

Examples

d <- as.dendrogram(hclust(dist(USArrests), "ave"))

Show original dendrogram
plot(d)

Subset to first 10 labels
d1 <- subset(d, labels(d)[1:10])
plot(d1)

Subset d1 to all except the first 2 labels
d2 <- subset(d1, labels(d1)[1:2], invert=TRUE)
plot(d2)

SubSetPairs Subset a “PairSummaries” object.

Description

For a given object of class “PairSummaries”, pairs based on either competing predictions, user
thresholds on prediction statistics, or both.

Usage

SubSetPairs(CurrentPairs,
UserThresholds,
RejectCompetitors = TRUE,
RejectionCriteria = "PID",
WinnersOnly = TRUE,
Verbose = FALSE)

Arguments

CurrentPairs An object of class “PairSummaries”. Can also take in a generic “data.frame”, as
long as the feature naming scheme is the same as that followed by all SynExtend
functions.

UserThresholds A named vector where values indicate a threshold for statistics to be above, and
names designate which statistic to threshold on.

RejectCompetitors

A logical that defaults to “TRUE”. Allowing users to choose to remove compet-
ing predictions. When set to “FALSE”, no competitor rejection is performed.
When “TRUE” all competing pairs with the exception of the best pair as de-
termined by “RejectionCriteria” are rejected. Can additionally be set to a nu-
meric or integer, in which case only competing predictions below that value are
dropped.

RejectionCriteria

A character indicating which column value competitor rejection should refer-
ence. Defaults to “PID”.

SummarizePairs 87

WinnersOnly A logical indicating whether or not to return just the pairs that are selected.
Defaults to “TRUE” to return a subset object of class “PairSummaries”. When
“FALSE”, function returns a list of two “PairSummaries” objects, one of the
selected pairs, and the second of the rejected pairs.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

SubSetPairs uses a naive competitor rejection algorithm to remove predicted pairs when nodes are
predicted to be paired to multiple nodes within the same index.

Value

An object of class “PairSummaries”, or a list of two “PairSummaries” objects.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries NucleotideOverlap

Examples

expected to be deprecated soon...
data("Endosymbionts_Pairs03", package = "SynExtend")
remove competitors under default conditions
Pairs2 <- SubSetPairs(CurrentPairs = Endosymbionts_Pairs03,

Verbose = TRUE)
THRESH <- c(0.5, 21)
names(THRESH) <- c("Consensus", "TotalMatch")
remove pairs only based on user defined thresholds
Pairs3 <- SubSetPairs(CurrentPairs = Endosymbionts_Pairs03,

UserThresholds = THRESH,
RejectCompetitors = FALSE,
Verbose = TRUE)

SummarizePairs Provide summaries of hypothetical orthologs.

Description

Given LinkedPairs object and a DECIPHER database, return a data.frame of summarized genomic
feature pairs. SummarizePairs will collect all the linked genomic features in the supplied LinkedPairs-class
object and return descriptions of the alignments of those features.

88 SummarizePairs

Usage

SummarizePairs(SynExtendObject,
DataBase01,
IncludeIndexSearch = TRUE,
AlignmentFun = "AlignPairs",
RetainAnchors = TRUE,
DefaultTranslationTable = "11",
KmerSize = 5,
IgnoreDefaultStringSet = FALSE,
Verbose = FALSE,
ShowPlot = FALSE,
Processors = 1,
Storage = 2,
IndexParams = list("K" = 6),
SearchParams = list("perPatternLimit" = 1),
...)

Arguments

SynExtendObject

An object of class LinkedPairs-class.

DataBase01 A character string pointing to a SQLite database, or a connection to a DECIPHER
database.

IncludeIndexSearch

A logical determining whether to include SearchIndex results in the initial in-
ference.

AlignmentFun A character string specifying a link{DECIPHER} alignment function. Currently
only supports AlignProfiles and AlignPairs.

RetainAnchors An argument that only affects AlignPairs; provide the kmer hits supplied by
FindSynteny as alignment anchors.

DefaultTranslationTable

A character vector of length 1 identifying the translation table to use if one is
not supplied in the GeneCalls attribute.

KmerSize An integer specifying what Kmer size to collect Kmer distance between se-
quences at.

IgnoreDefaultStringSet

Translate all sequences in nucleotide space.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

ShowPlot Logical indicating whether or not to provide a plot of features collected by the
function. Currently not implemented.

Processors An integer value indicating how many processors to supply to AlignPairs.
Supplying NULL will cause detection and use of all available cores.

Storage A soft memory limit for how much sequence data from the database to retain in
memory while running. In Gb.

SummarizePairs 89

IndexParams Arguments to be passed to IndexSeqs.

SearchParams Arguments to be passed to SearchIndex.

... Additional arguments to pass to interior functions. Currently not implemented.

Details

SummarizePairs collects features describing each linked feature pair. These include an alignment
PID, an alignment Score, a Kmer distance, a concensus score for the linking hits –or whether or not
linking hits are in similar places in each feature– and a few other features.

Value

An object of class PairSummaries.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PrepareSeqs, NucleotideOverlap, FindSynteny, LinkedPairs-class

Examples

library(RSQLite)
DBPATH <- system.file("extdata",

"Endosymbionts_v02.sqlite",
package = "SynExtend")

tmp <- tempfile()
system(command = paste("cp",

DBPATH,
tmp))

DBCONN <- dbConnect(SQLite(), tmp)

data("Endosymbionts_LinkedFeatures", package = "SynExtend")
PrepareSeqs(SynExtendObject = Endosymbionts_LinkedFeatures,

DataBase01 = DBCONN,
Verbose = TRUE)

SummarizedPairs <- SummarizePairs(SynExtendObject = Endosymbionts_LinkedFeatures,
DataBase01 = DBCONN,
Verbose = TRUE)

dbDisconnect(DBCONN)
unlink(tmp)

90 SuperTree

SuperTree Create a Species Tree from Gene Trees

Description

Given a set of unrooted gene trees, creates a species tree. This function works for rooted gene trees,
but may not accurately root the resulting tree.

Usage

SuperTree(myDendList, NAMEFUN=NULL, Verbose=TRUE, Processors=1)

Arguments

myDendList List of dendrogram objects, where each entry is an unrooted gene tree.

NAMEFUN Optional input specifying a function to apply to each leaf to convert gene tree
leaf labels into species names. This function should take as input a character
vector and return a character vector of the same size. By default equals NULL,
indicating that gene tree leaves are already labeled with species identifiers. See
details for more information.

Verbose Should output be displayed?

Processors Number of processors to use for calculating the final species tree.

Details

This implementation follows the ASTRID algorithm for estimating a species tree from a set of un-
rooted gene trees. Input gene trees are not required to have identical species sets, as the algorithm
can handle missing entries in gene trees. The algorithm essentially works by averaging the Cophe-
netic distance matrices of all gene trees, then constructing a neighbor-joining tree from the resulting
distance matrix. See the original paper linked in the references section for more information.

If two species never appear together in a gene tree, their distance cannot be estimated in the al-
gorithm and will thus be missing. SuperTree handles this by imputing the value using the dis-
tances available with data-interpolating empirical orthogonal functions (DINEOF). This approach
has relatively high accuracy even up to high levels of missingness. Eigenvector calculation speed is
improved using a Lanczos algorithm for matrix compression.

SuperTree allows an optional argument called NAMEFUN to apply a renaming step to leaf labels.
Gene trees as constructed by other functions in SynExtend (ex. DisjointSet) often include other
information aside from species name when labeling genes, but SuperTree requires that leaf nodes
of the gene tree are labeled with just an identifier corresponding to which species/genome each leaf
is from. Duplicate values are allowed. See the examples section for more details on what this looks
like and how to handle it.

Value

A dendrogram object corresponding to the species tree constructed from input gene trees.

SuperTreeEx 91

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Vachaspati, P., Warnow, T. ASTRID: Accurate Species TRees from Internode Distances. BMC
Genomics, 2015. 16 (Suppl 10): S3.

Taylor, M.H., Losch, M., Wenzel, M. and Schröter, J. On the sensitivity of field reconstruction and
prediction using empirical orthogonal functions derived from gappy data. Journal of Climate, 2013.
26(22): 9194-9205.

See Also

TreeLine, SuperTreeEx

Examples

Loads a list of dendrograms
each is a gene tree from Streptomyces genomes
data("SuperTreeEx", package="SynExtend")

Notice that the labels of the tree are in #_#_# format
See the man page for SuperTreeEx for more info
labs <- labels(exData[[1]])
if(interactive()) print(labs)

The first number corresponds to the species,
so we need to trim the rest in each leaf label
namefun <- function(x) gsub("([0-9A-Za-z]*)_.*", "\\1", x)
namefun(labs) # trims to just first number

This function replaces gene identifiers with species identifiers
we pass it to NAMEFUN
Note NAMEFUN should take in a character vector and return a character vector
tree <- SuperTree(exData, NAMEFUN=namefun)

SuperTreeEx Example Dendrograms

Description

A set of four dendrograms for use in SuperTree examples.

Usage

data("SuperTreeEx")

92 SuperTreeEx

Format

A list with four elements, where each is a object of type dendrogram corresponding to a gene tree
constructed from a set of 301 Streptomyces genomes. Each leaf node is labeled in the form A_B_C,
where A is a number identifying the genome, B is a number identifying the contig, and C is a number
identifying the gene. Altogether, each label uniquely identifies a gene.

Examples

data(SuperTreeEx, package="SynExtend")

Index

∗ GeneCalls
gffToDataFrame, 52

∗ datasets
BuiltInEnsembles, 8
CIDist_NullDist, 9
Endosymbionts_GeneCalls, 19
Endosymbionts_LinkedFeatures, 20
Endosymbionts_Pairs01, 20
Endosymbionts_Pairs02, 21
Endosymbionts_Pairs03, 21
Endosymbionts_Sets, 22
Endosymbionts_Synteny, 22
ExampleStreptomycesData, 38
Generic, 51
SuperTreeEx, 91

[.LinkedPairs (LinkedPairs), 53
'DecisionTree', 78

AlignPairs, 44, 88
AlignProfiles, 82, 88
AlignSeqs, 82
AlignTranslation, 82
Ancestral.EvoWeaver

(EvoWeaver-SLPreds), 36
as.data.frame, 76
as.data.frame.simMat (simMat), 82
as.dendrogram, 15
as.dendrogram.DecisionTree

(DecisionTree-class), 12
as.matrix.simMat (simMat), 82
as.simMat (simMat), 82
attributes, 14

Behdenna.EvoWeaver (EvoWeaver-PPPreds),
32

BlastSeqs, 3, 55
BlockExpansion, 4
BlockReconciliation, 6
BuiltInEnsembles, 8, 29

CIDist (PhyloDistance-CIDist), 63
CIDist_NullDist, 9
ClusterByK, 10
Clustering Information Distance, 9, 35,

61, 62
CorrGL.EvoWeaver (EvoWeaver-PPPreds), 32

data.frame, 4, 41, 71
DecisionTree class, 78
DecisionTree-class, 12
dendrapply, 13, 62, 63, 65–67
dendrogram, 12, 14, 15, 17, 90, 92
Diag (simMat), 82
Diag<- (simMat), 82
DisjointSet, 16, 46, 90
dist, 55, 82
DistanceMatrix, 82
DPhyloStatistic, 17

Endosymbionts_GeneCalls, 19
Endosymbionts_LinkedFeatures, 20
Endosymbionts_Pairs01, 20
Endosymbionts_Pairs02, 21
Endosymbionts_Pairs03, 21
Endosymbionts_Sets, 22
Endosymbionts_Synteny, 22
EstimateExoLabel, 23, 42, 43
EstimateRearrangementScenarios

(EstimRearrScen), 24
EstimRearrScen, 24
EvoWeaver, 27, 30–32, 34–38, 70, 72, 73
EvoWeaver Gene Organization Methods,

71, 72
EvoWeaver Gene Organization

Predictors, 34, 35, 37, 73
EvoWeaver Phylogenetic Profiling

Methods, 72
EvoWeaver Phylogenetic Profiling

Predictors, 31, 35, 37, 73

93

94 INDEX

EvoWeaver Phylogenetic Structure
Methods, 71, 72

EvoWeaver Phylogenetic Structure
Predictors, 31, 34, 37, 73

EvoWeaver Sequence Level Methods, 71
EvoWeaver Sequence-Level Methods, 72
EvoWeaver Sequence-Level Predictors,

31, 34, 36, 73
EvoWeaver-class (EvoWeaver), 27
EvoWeaver-GOPreds, 30
EvoWeaver-PPPreds, 32
EvoWeaver-PSPreds, 34
EvoWeaver-SLPreds, 36
EvoWeaver-utils (EvoWeaver), 27
EvoWeb, 37, 69, 70, 72, 73
ExampleStreptomycesData, 29, 38
ExoLabel, 23, 24, 39
ExpandDiagonal, 11, 43
ExtantJaccard.EvoWeaver

(EvoWeaver-PPPreds), 32
ExtractBy, 45

FastQFromSRR, 46
FindSets, 17, 48
FindSynteny, 5, 8, 11, 17, 24, 27, 44, 46, 58,

60, 75, 80, 88, 89
FitchParsimony, 49
formula, 76

GeneDistance.EvoWeaver
(EvoWeaver-GOPreds), 30

Generic, 51
GeneVector.EvoWeaver

(EvoWeaver-SLPreds), 36
gffToDataFrame, 52
GLDistance.EvoWeaver

(EvoWeaver-PPPreds), 32
glm, 8
GLMI.EvoWeaver (EvoWeaver-PPPreds), 32

Hamming.EvoWeaver (EvoWeaver-PPPreds),
32

IndexSeqs, 89

Jaccard-Robinson-Foulds Distance, 35,
61, 62

JRFDist (PhyloDistance-JRFDist), 64

KFDist (PhyloDistance-KFDist), 66

Kuhner-Felsenstein Distance, 35, 62

lapply, 15
LinkedPairs, 53
LinkedPairs-class (LinkedPairs), 53
list, 56
lm, 76, 77

MakeBlastDb, 3, 4, 54
Moran’s I, 72
MoranI, 31, 55
MoransI.EvoWeaver (EvoWeaver-GOPreds),

30

NucleotideOverlap, 5, 11, 44, 57, 60, 75, 80,
87, 89

Nye Similarity, 35

OrientationMI.EvoWeaver
(EvoWeaver-GOPreds), 30

PairSummaries, 5, 8, 17, 44, 46, 48, 58, 80, 87
PAJaccard.EvoWeaver

(EvoWeaver-PPPreds), 32
palette, 69
PAOverlap.EvoWeaver

(EvoWeaver-PPPreds), 32
PhyloDistance, 35, 36, 61, 63, 64, 66, 67
PhyloDistance-CI

(PhyloDistance-CIDist), 63
PhyloDistance-CIDist, 63
PhyloDistance-JRF

(PhyloDistance-JRFDist), 64
PhyloDistance-JRFDist, 64
PhyloDistance-KF

(PhyloDistance-KFDist), 66
PhyloDistance-KFDist, 66
PhyloDistance-RF

(PhyloDistance-RFDist), 67
PhyloDistance-RFDist, 67
Phylogenetic Profiling Algorithms, 71
plot.DecisionTree (DecisionTree-class),

12
plot.dendrogram, 12
plot.EvoWeb, 37, 68
predict.EvoWeaver, 27, 29, 31, 34, 35, 37,

68, 69, 70
predict.RandForest, 78
predict.RandForest (RandForest), 75

INDEX 95

PrepareSeqs, 74, 89
print.LinkedPairs (LinkedPairs), 53
print.simMat (simMat), 82
ProfDCA.EvoWeaver (EvoWeaver-PPPreds),

32

RandForest, 12, 13, 75
rapply, 14, 15
read.table, 40
RFDist (PhyloDistance-RFDist), 67
Robinson-Foulds Distance, 35, 61, 62
RPContextTree.EvoWeaver

(EvoWeaver-PSPreds), 34
RPMirrorTree.EvoWeaver

(EvoWeaver-PSPreds), 34

SearchIndex, 88, 89
SelectByK, 79
SequenceInfo.EvoWeaver

(EvoWeaver-SLPreds), 36
SequenceSimilarity, 81
simMat, 37, 82
simMat-class (simMat), 82
SpeciesTree (EvoWeaver), 27
subset, 85
subset.dendrogram, 85
SubSetPairs, 86
SummarizePairs, 11, 75, 87
SuperTree, 29, 31, 33, 90, 91
SuperTreeEx, 91, 91
Synteny, 24, 27

tempdir, 40
text, 12
TMPDIR, 54
TreeDistance.EvoWeaver

(EvoWeaver-PSPreds), 34
TreeLine, 91

XStringSet, 3, 54

	BlastSeqs
	BlockExpansion
	BlockReconciliation
	BuiltInEnsembles
	CIDist_NullDist
	ClusterByK
	DecisionTree-class
	dendrapply
	DisjointSet
	DPhyloStatistic
	Endosymbionts_GeneCalls
	Endosymbionts_LinkedFeatures
	Endosymbionts_Pairs01
	Endosymbionts_Pairs02
	Endosymbionts_Pairs03
	Endosymbionts_Sets
	Endosymbionts_Synteny
	EstimateExoLabel
	EstimRearrScen
	EvoWeaver
	EvoWeaver-GOPreds
	EvoWeaver-PPPreds
	EvoWeaver-PSPreds
	EvoWeaver-SLPreds
	EvoWeb
	ExampleStreptomycesData
	ExoLabel
	ExpandDiagonal
	ExtractBy
	FastQFromSRR
	FindSets
	FitchParsimony
	Generic
	gffToDataFrame
	LinkedPairs
	MakeBlastDb
	MoranI
	NucleotideOverlap
	PairSummaries
	PhyloDistance
	PhyloDistance-CIDist
	PhyloDistance-JRFDist
	PhyloDistance-KFDist
	PhyloDistance-RFDist
	plot.EvoWeb
	predict.EvoWeaver
	PrepareSeqs
	RandForest
	SelectByK
	SequenceSimilarity
	simMat
	subset.dendrogram
	SubSetPairs
	SummarizePairs
	SuperTree
	SuperTreeEx
	Index

