Package 'svaNUMT'

January 22, 2025

Title NUMT detection from structural variant calls Version 1.13.0 Date 2024-04-24 **Description** svaNUMT contains functions for detecting NUMT events from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies NUMTs by nuclear-mitochondrial breakend junctions. The main function reports candidate NUMTs if there is a pair of valid insertion sites found on the nuclear genome within a certain distance threshold. The candidate NUMTs are reported by events. License GPL-3 + file LICENSE Depends GenomicRanges, rtracklayer, VariantAnnotation, StructuralVariantAnnotation, BiocGenerics, Biostrings, R (>= Imports assertthat, stringr, dplyr, methods, rlang, GenomeInfoDb, S4Vectors, GenomicFeatures, pwalign Suggests TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, ggplot2, devtools, testthat (>= 2.1.0), roxygen2, knitr, readr, plyranges, circlize, IRanges, SummarizedExperiment, rmarkdown RoxygenNote 7.1.2 **Encoding UTF-8** VignetteBuilder knitr biocViews DataImport, Sequencing, Annotation, Genetics, VariantAnnotation BugReports https://github.com/PapenfussLab/svaNUMT/issues git_url https://git.bioconductor.org/packages/svaNUMT git branch devel git_last_commit 1a144f0 git_last_commit_date 2024-10-29

Type Package

2 .mtLen

Repository Bioconductor 3.21

Date/Publication 2025-01-21

Author Ruining Dong [aut, cre] (ORCID:

<https://orcid.org/0000-0003-1433-0484>)

Maintainer Ruining Dong <lnyidrn@gmail.com>

Contents

$.mtLen\ .\ .\ .\ .\ .\ .$																			
numtDetect																			
numtDetect_insseq																			
$numtDetect_known$																			
$numtDetect_MT$																			
seq A lignment. score																			
svaNUMT																			

Index 8

.mtLen

Calculating MT sequence length.

Description

Calculating MT sequence length.

Usage

```
.mtLen(bnd.start, bnd.end, chrM.len)
```

Arguments

bnd.start starting breakend of the MT sequence.
bnd.end ending breakend of the MT sequence.
chrM.len length of the reference MT genome.

Details

This function calculate the length of MT sequence length with BND notations.

Value

The length of the MT sequence. When the candidate MT BNDs can't be linked as one sequence, the returned value is NA.

numtDetect 3

numtDe	tect	Detecting nuclear mitochondria fusion events.

Description

Detecting nuclear mitochondria fusion events.

Usage

```
numtDetect(
   gr,
   numtS,
   genomeMT,
   max_ins_dist = 10,
   maxgap_numtS = 10,
   min_len = 20,
   min.Align = 0.8
)
```

Arguments

gr	A GRanges object
numtS	A GRanges object of known NUMT sites.
genomeMT	A genome object of the mitochondria.
max_ins_dist	The maximum distance allowed on the reference genome between the paired insertion sites. Only intra-chromosomal NUMT events are supported. Default value is 10.
maxgap_numtS	The maximum distance allowed betweeen the insertion sequence loci and known NUMTs.
min_len	The minimum length allowed of the insertion sequences. Default value is 20.
min.Align	The minimum alignment score allowed between the insertion sequence and MT genome.

Details

Nuclear mitochondrial fusion (NUMT) is a common event found in human genomes. This function searches for NUMT events by identifying breakpoints supporting the fusion of nuclear chromosome and mitochondrial genome. Only BND notations are supported at the current stage. Possible linked nuclear insertion sites are reported by chromosome in GRanges format.

Value

A nested list of GRanges objects of candidate NUMTs.

4 numtDetect_insseq

Examples

```
vcf.file <- system.file("extdata", "MT.vcf", package = "svaNUMT")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
gr <- breakpointRanges(vcf, nominalPosition=TRUE)
numtS <- readr::read_table(system.file("extdata", "numtS.txt", package = "svaNUMT"), col_names = FALSE)
colnames(numtS) <- c("bin", "seqnames", "start", "end", "name", "score", "strand")
numtS <- `seqlevelsStyle<-`(GRanges(numtS), "NCBI")
genome <- BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19
genomeMT <- genome$chrMT
numt.gr <- numtDetect(gr, numtS, genomeMT, max_ins_dist=20)</pre>
```

numtDetect_insseq

Detecting nuclear mitochondria fusion events from unmapped insertion sequences.

Description

Detecting nuclear mitochondria fusion events from unmapped insertion sequences.

Usage

```
numtDetect_insseq(gr, genomeMT, min_len = 20, min.Align = 0.8)
```

Arguments

genomeMT A GRanges object
genomeMT A genome object of the mitochondria.
min_len The minimum length allowed of the insertion sequences. Default value is 20.
min.Align The minimum alignment score allowed between the insertion sequence and MT

genome.

Details

This function looks for NUMTs which the insertion MT sequences come from insertion sequences reported by SV callers.

Value

A nested list of GRanges objects of candidate NUMTs.

numtDetect_known 5

numtDetect_known	Detecting nuclear mitochondria fusion events from known NUMT sites.
------------------	---

Description

Detecting nuclear mitochondria fusion events from known NUMT sites.

Usage

```
numtDetect_known(gr, numtS, max_ins_dist = 10, maxgap_numtS = 10)
```

Arguments

gr A GRanges object

numtS A GRanges object of known NUMT sites.

max_ins_dist
The maximum distance allowed on the reference genome between the paired

insertion sites. Only intra-chromosomal NUMT events are supported. Default

value is 10.

maxgap_numtS The maximum distance allowed between the insertion sequence loci and known

NUMTs.

Details

This function looks for NUMTs which the insertion MT sequences come from known NUMT sites.

Value

A nested list of GRanges objects of candidate NUMTs.

numtDetect MT	Detecting nuclear mitochondria fusion events from breakpoints con-
Hamebeece	nected to MT reference genome.

Description

Detecting nuclear mitochondria fusion events from breakpoints connected to MT reference genome.

Usage

```
numtDetect_MT(gr, max_ins_dist = 10)
```

6 seqAlignment.score

Arguments

gr A GRanges object

max_ins_dist The maximum distance allowed on the reference genome between the paired

insertion sites. Only intra-chromosomal NUMT events are supported. Default

value is 10.

Details

This function looks for NUMTs which the insertion MT sequences come from known NUMT sites.

Value

A nested list of GRanges objects of candidate NUMTs.

seqAlignment.score

Calculating the alignment score between a DNA sequence and target

genome.

Description

Calculating the alignment score between a DNA sequence and target genome.

Usage

```
seqAlignment.score(seq, genome)
```

Arguments

seq A string of DNA sequence.

genome An XString of the target genome.

Details

This function calculates the alignment score between a DNA sequence and target genome.

Value

A alignment score between a DNA sequence and target genome.

svaNUMT 7

svaNUMT

svaNUMT: a package for NUMT detection

Description

svaNUMT contains functions for detecting NUMT events from structural variant calls. svaNUMT contains functions for detecting NUMT events from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies NUMTs by nuclear-mitochondrial breakend junctions. The main function reports candidate NUMTs if there is a pair of valid insertion sites found on the nuclear genome within a certain distance threshold. The candidate NUMTs are reported by events.

Details

For more details on the features of StructuralVariantAnnotation, read the vignette: 'browseVignettes(package = "svaNUMT")'

Index

```
* internal
.mtLen, 2
numtDetect_insseq, 4
numtDetect_known, 5
numtDetect_MT, 5
seqAlignment.score, 6
.mtLen, 2

numtDetect, 3
numtDetect_insseq, 4
numtDetect_known, 5
numtDetect_MT, 5

seqAlignment.score, 6
svaNUMT, 7
```