library(dplyr)
library(biotmle)
library(biotmleData)
suppressMessages(library(SummarizedExperiment))
"%ni%" = Negate("%in%")
Here, we briefly work through how to use the biotmle
package with data generated by next-generation sequencing technologies, which, in contrast to microarray technologies, produce measurements in the form of discrete counts.
set.seed(6423709)
n <- 50
g <- 2500
cases_pois <- 50
controls_pois <- 10
ngs_cases <- as.data.frame(matrix(replicate(n, rpois(g, cases_pois)), g))
ngs_controls <- as.data.frame(matrix(replicate(n, rpois(g, controls_pois)), g))
ngs_data <- as.data.frame(cbind(ngs_cases, ngs_controls))
exp_var <- c(rep(1, n), rep(0, n))
batch <- rep(1:2, n)
covar <- rep(1, n * 2)
design <- as.data.frame(cbind(exp_var, batch, covar))
head(ngs_data[, 1:7])
## V1 V2 V3 V4 V5 V6 V7
## 1 69 61 39 46 50 57 43
## 2 42 59 50 54 44 53 54
## 3 41 49 52 54 50 58 34
## 4 30 44 49 44 46 36 61
## 5 50 56 45 44 46 61 58
## 6 61 50 47 53 49 54 67
se <- SummarizedExperiment(assays = list(counts = DataFrame(ngs_data)),
colData = DataFrame(design))
se
## class: SummarizedExperiment
## dim: 2500 100
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames(100): V1 V2 ... V49.1 V50.1
## colData names(3): exp_var batch covar
rnaseqTMLEout <- biomarkertmle(se = se,
varInt = 1,
type = "exposure",
ngscounts = TRUE,
parallel = TRUE,
family = "gaussian",
g_lib = c("SL.mean", "SL.glm", "SL.randomForest"),
Q_lib = c("SL.mean", "SL.glm", "SL.randomForest",
"SL.nnet")
)
head(rnaseqTMLEout@tmleOut$E[, seq_len(6)])
## [,1] [,2] [,3] [,4] [,5] [,6]
## result.1 -329.83655 -212.28070 160.39144 32.96832 -36.05786 -146.77124
## result.2 91.43805 -129.00196 -39.20680 -47.18052 44.29473 -30.83862
## result.3 102.01072 -294.65959 -77.65629 -376.36991 -61.66602 -441.74551
## result.4 323.94443 93.76761 13.80324 93.71017 47.56326 224.33603
## result.5 11.71456 -148.33216 93.43461 47.79556 61.82086 -229.99698
## result.6 -183.73280 -4.00971 45.02578 -53.02987 -4.00971 -69.37162
limmaTMLEout <- modtest_ic(biotmle = rnaseqTMLEout)
head(limmaTMLEout@topTable)
## logFC AveExpr t P.Value adj.P.Val B
## result.1 -32.072167 -32.072167 -1.7430776 0.08297431 0.9303074 -4.595093
## result.2 -25.903359 -25.903359 -1.4289259 0.15470453 0.9342061 -4.595106
## result.3 -15.865179 -15.865179 -0.6675294 0.50526227 0.9731485 -4.595127
## result.4 20.394523 20.394523 0.9768991 0.32988929 0.9401033 -4.595120
## result.5 -23.932669 -23.932669 -1.2276717 0.22112330 0.9401033 -4.595113
## result.6 -8.540187 -8.540187 -0.4839883 0.62896415 0.9746949 -4.595130
## IDs
## result.1 result.1
## result.2 result.2
## result.3 result.3
## result.4 result.4
## result.5 result.5
## result.6 result.6
plot(x = limmaTMLEout, type = "pvals_adj")
plot(x = limmaTMLEout, type = "pvals_raw")
varInt_index <- which(names(colData(se)) %in% "exp_var")
designVar <- as.data.frame(colData(se))[, varInt_index]
design <- as.numeric(designVar == max(designVar))
heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 1.0, top = 10)
volcano_ic(biotmle = limmaTMLEout)
## R version 3.4.2 (2017-09-28)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] bindrcpp_0.2 SummarizedExperiment_1.8.0
## [3] DelayedArray_0.4.0 matrixStats_0.52.2
## [5] Biobase_2.38.0 GenomicRanges_1.30.0
## [7] GenomeInfoDb_1.14.0 IRanges_2.12.0
## [9] S4Vectors_0.16.0 BiocGenerics_0.24.0
## [11] biotmleData_1.2.0 biotmle_1.3.0
## [13] dplyr_0.7.4 BiocStyle_2.6.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.13 lattice_0.20-35 listenv_0.6.0
## [4] assertthat_0.2.0 rprojroot_1.2 digest_0.6.12
## [7] foreach_1.4.3 R6_2.2.2 wesanderson_0.3.2
## [10] plyr_1.8.4 nnls_1.4 backports_1.1.1
## [13] evaluate_0.10.1 ggplot2_2.2.1 zlibbioc_1.24.0
## [16] rlang_0.1.2 lazyeval_0.2.1 Matrix_1.2-11
## [19] rmarkdown_1.6 labeling_0.3 BiocParallel_1.12.0
## [22] stringr_1.2.0 RCurl_1.95-4.8 munsell_0.4.3
## [25] compiler_3.4.2 pkgconfig_2.0.1 superheat_0.1.0
## [28] globals_0.10.3 htmltools_0.3.6 tibble_1.3.4
## [31] GenomeInfoDbData_0.99.1 bookdown_0.5 codetools_0.2-15
## [34] doFuture_0.6.0 future_1.6.2 tmle_1.2.0-5
## [37] MASS_7.3-47 bitops_1.0-6 grid_3.4.2
## [40] gtable_0.2.0 magrittr_1.5 scales_0.5.0
## [43] stringi_1.1.5 XVector_0.18.0 limma_3.34.0
## [46] ggdendro_0.1-20 iterators_1.0.8 tools_3.4.2
## [49] glue_1.2.0 yaml_2.1.14 colorspace_1.3-2
## [52] SuperLearner_2.0-22 knitr_1.17 bindr_0.1