constructor
More...
#include <dune/fem/quadrature/cachingpointlist.hh>
|
static GeometryType | getFaceGeometry (const GeometryType &elementGeo, const int face) |
|
template<typename GridPartImp, class IntegrationTraits>
class Dune::Fem::CachingPointList< GridPartImp, 1, IntegrationTraits >
constructor
- Note
- The CachingPointList requires the grid part to get twist information for TwistUtility (see also ElementIntegrationPointList<GridPartImp,1>).
- Parameters
-
[in] | gridPart | grid partition |
[in] | intersection | intersection |
[in] | quadKey | desired order of the quadrature or other means of quadrature identification |
[in] | side | either INSIDE or OUTSIDE; codim-0 entity for which the ElementQuadrature shall be created |
◆ CacheProviderType
template<typename GridPartImp , class IntegrationTraits >
◆ CoordinateType
template<typename GridPartImp , class IntegrationTraits >
Type of coordinates in codim-0 reference element.
◆ GridPartType
template<typename GridPartImp , class IntegrationTraits >
type of the grid partition
◆ IntegrationPointListType
type of the integration point list
◆ IntersectionIterator
template<typename GridPartImp , class IntegrationTraits >
◆ IntersectionIteratorType
template<typename GridPartImp , class IntegrationTraits >
Type of the intersection iterator.
◆ IntersectionType
template<typename GridPartImp , class IntegrationTraits >
◆ IteratorType
template<typename GridPartImp , class IntegrationTraits >
◆ LocalCoordinateType
◆ MapperPairType
template<typename GridPartImp , class IntegrationTraits >
◆ NonConformingQuadratureType
template<typename GridPartImp , class IntegrationTraits >
type of quadrature used for non-conforming intersections
◆ PointProviderType
template<typename GridPartImp , class IntegrationTraits >
◆ PointVectorType
template<typename GridPartImp , class IntegrationTraits >
◆ QuadratureKeyType
template<typename GridPartImp , class IntegrationTraits >
type of quadrature identifier on user side (default is the order of quadrature)
◆ QuadraturePointWrapperType
template<typename GridPartImp , class IntegrationTraits >
◆ RealType
template<typename GridPartImp , class IntegrationTraits >
◆ TwistUtilityType
template<typename GridPartImp , class IntegrationTraits >
◆ Side
◆ CachingPointList()
template<typename GridPartImp , class IntegrationTraits >
constructor
- Note
- The CachingPointList requires the grid part to get twist information for TwistUtility (see also ElementIntegrationPointList<GridPartImp,1>).
- Parameters
-
[in] | gridPart | grid partition |
[in] | intersection | intersection |
[in] | quadKey | desired order of the quadrature or other means of quadrature identification |
[in] | side | either INSIDE or OUTSIDE; codim-0 entity for which the ElementQuadrature shall be created |
◆ begin()
template<typename GridPartImp , class IntegrationTraits >
◆ cachingPoint()
template<typename GridPartImp , class IntegrationTraits >
map quadrature points to caching points
For codim-1 entites, the mapping consists of two stages:
- Consider the twist to get the quadrature point number on the face of the (codim-0) reference element,
- Map the twisted quadrature point number to the caching point number.
- Parameters
-
[in] | quadraturePoint | number of quadrature point to map to a caching point |
◆ cachingPointStart()
◆ elementGeometry()
obtain GeometryType of the corresponding codim-0 the integration point list belongs to
An element integration point list can return the coordinates of integration points with resepct to the codim-0 reference element and the reference element corresponding to the subentity the quadrature actually lives on. This method returns the geometry of the codim-0 entity.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- GeometryType for this integration point list
◆ end()
template<typename GridPartImp , class IntegrationTraits >
◆ geometry()
obtain GeometryType for this integration point list
◆ getFaceGeometry()
static GeometryType Dune::Fem::ElementPointListBase< GridPartImp, codim, IntegrationTraits >::getFaceGeometry |
( |
const GeometryType & |
elementGeo, |
|
|
const int |
face |
|
) |
| |
|
inlinestaticprotectedinherited |
◆ getPointList()
template<typename GridPartImp , class IntegrationTraits >
◆ getTwist()
template<typename GridPartImp , class IntegrationTraits >
◆ id()
obtain the identifier of the integration point list
The identifier of an integration point list must be globally unique. Even integration point lists for different dimensions must have different identifiers.
- Note
- Quadratures are considered distinct if they differ in one of the following points: geometry type, order, dimension or implementation.
- Returns
- globally unique identifier of the integration point list
◆ interpolationPoint()
template<typename GridPartImp , class IntegrationTraits >
map quadrature points to interpolation points
- Parameters
-
[in] | quadraturePoint | number of quadrature point to map to an interpolation point |
◆ isInterpolationQuadrature()
template<typename GridPartImp , class IntegrationTraits >
bool Dune::Fem::CachingPointList< GridPartImp, 1, IntegrationTraits >::isInterpolationQuadrature |
( |
const size_t |
numShapeFunctions | ) |
const |
|
inline |
check if quadrature is interpolation quadrature
- Parameters
-
[in] | numShapeFunctions | number of shapeFunctions that has to match number of quadrature points or number of internal interpolation points |
◆ localCachingPoint()
template<typename GridPartImp , class IntegrationTraits >
◆ localFaceIndex()
◆ localPoint()
obtain local coordinates of i-th integration point
This method returns a reference to the local coordinates of the i-th integration point for 0 <= i < nop(). Here, local coordinates means coordinates with respect to the reference element of the subentity.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ nCachingPoints()
◆ nop()
obtain the number of integration points
- Returns
- number of integration points within this list
◆ operator[]()
template<typename GridPartImp , class IntegrationTraits >
◆ order()
obtain order of the integration point list
The order of a quadrature is the maximal polynomial degree that is guaranteed to be integrated exactly by the quadrature.
In case of an integration point list, the definition of this value is left to the implementor.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- the order of the integration point list
◆ point()
template<typename GridPartImp , class IntegrationTraits >
obtain coordinates of i-th integration point
This method returns a reference to the coordinates of the i-th integration point for 0 <= i < nop(). The integration point is given in local coordinates, i.e., coordinates with respect to the reference element.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ quadImp()
obtain the actual implementation of the quadrature
- Note
- This method may only be used in derived classes.
- Returns
- a reference to the actual implementation of the quadrature
◆ twisted()
template<typename GridPartImp , class IntegrationTraits >
returns true if cachingPoint is not the identity mapping
◆ twistId()
template<typename GridPartImp , class IntegrationTraits >
returns the twistId, i.e. [0,...,7]
◆ codimension
template<typename GridPartImp , class IntegrationTraits >
◆ dimension
template<typename GridPartImp , class IntegrationTraits >
◆ pointSetId
template<typename GridPartImp , class IntegrationTraits >
Initial value:= (quadPointSetId > 0) ? quadPointSetId :
The documentation for this class was generated from the following file: