constructor
More...
#include <dune/fem/quadrature/elementpointlist.hh>
|
static GeometryType | getFaceGeometry (const GeometryType &elementGeo, const int face) |
|
template<class GridPartImp, class IntegrationTraits>
class Dune::Fem::ElementIntegrationPointList< GridPartImp, 1, IntegrationTraits >
constructor
- Parameters
-
[in] | gridPart | grid partition (a dummy here) |
[in] | intersection | intersection |
[in] | quadKey | quadrature key, i.e. desired order of the quadrature |
[in] | side | either INSIDE or OUTSIDE; codim-0 entity for which the ElementQuadrature shall be created |
- Note
- This code assumes that the codim-0 entity is either a simplex or a cube (otherwise elementGeometry() returns a wrong geometry).
◆ CoordinateType
template<class GridPartImp , class IntegrationTraits >
Type of coordinates in codim-0 reference element.
◆ GridPartType
template<class GridPartImp , class IntegrationTraits >
type of the grid partition
◆ IntegrationPointListType
type of the integration point list
◆ IntersectionIterator
template<class GridPartImp , class IntegrationTraits >
◆ IntersectionIteratorType
template<class GridPartImp , class IntegrationTraits >
Type of the intersection iterator.
◆ IntersectionType
template<class GridPartImp , class IntegrationTraits >
◆ IteratorType
template<class GridPartImp , class IntegrationTraits >
◆ LocalCoordinateType
◆ NonConformingQuadratureType
template<class GridPartImp , class IntegrationTraits >
type quadrature for use on non-conforming intersections
◆ QuadratureKeyType
template<class GridPartImp , class IntegrationTraits >
type of quadrature identifier on user side (default is the order of quadrature)
◆ QuadraturePointWrapperType
template<class GridPartImp , class IntegrationTraits >
type of the quadrature point
◆ RealType
◆ TwistUtilityType
template<class GridPartImp , class IntegrationTraits >
◆ Side
◆ ElementIntegrationPointList()
template<class GridPartImp , class IntegrationTraits >
constructor
- Parameters
-
[in] | gridPart | grid partition (a dummy here) |
[in] | intersection | intersection |
[in] | quadKey | quadrature key, i.e. desired order of the quadrature |
[in] | side | either INSIDE or OUTSIDE; codim-0 entity for which the ElementQuadrature shall be created |
- Note
- This code assumes that the codim-0 entity is either a simplex or a cube (otherwise elementGeometry() returns a wrong geometry).
◆ begin()
template<class GridPartImp , class IntegrationTraits >
◆ cachingPoint()
◆ cachingPointStart()
◆ elementGeometry()
obtain GeometryType of the corresponding codim-0 the integration point list belongs to
An element integration point list can return the coordinates of integration points with resepct to the codim-0 reference element and the reference element corresponding to the subentity the quadrature actually lives on. This method returns the geometry of the codim-0 entity.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- GeometryType for this integration point list
◆ end()
template<class GridPartImp , class IntegrationTraits >
◆ geometry()
obtain GeometryType for this integration point list
◆ getFaceGeometry()
static GeometryType Dune::Fem::ElementPointListBase< GridPartImp, codim, IntegrationTraits >::getFaceGeometry |
( |
const GeometryType & |
elementGeo, |
|
|
const int |
face |
|
) |
| |
|
inlinestaticprotectedinherited |
◆ getPointList()
template<class GridPartImp , class IntegrationTraits >
◆ id()
obtain the identifier of the integration point list
The identifier of an integration point list must be globally unique. Even integration point lists for different dimensions must have different identifiers.
- Note
- Quadratures are considered distinct if they differ in one of the following points: geometry type, order, dimension or implementation.
- Returns
- globally unique identifier of the integration point list
◆ localCachingPoint()
◆ localFaceIndex()
◆ localPoint()
obtain local coordinates of i-th integration point
This method returns a reference to the local coordinates of the i-th integration point for 0 <= i < nop(). Here, local coordinates means coordinates with respect to the reference element of the subentity.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ nCachingPoints()
◆ nop()
obtain the number of integration points
- Returns
- number of integration points within this list
◆ operator[]()
template<class GridPartImp , class IntegrationTraits >
◆ order()
obtain order of the integration point list
The order of a quadrature is the maximal polynomial degree that is guaranteed to be integrated exactly by the quadrature.
In case of an integration point list, the definition of this value is left to the implementor.
- Note
- Calling this method yields a virtual function call, so do not call this method unnecessarily.
- Returns
- the order of the integration point list
◆ point()
template<class GridPartImp , class IntegrationTraits >
obtain coordinates of i-th integration point
This method returns a reference to the coordinates of the i-th integration point for 0 <= i < nop(). The integration point is given in local coordinates, i.e., coordinates with respect to the reference element.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ quadImp()
obtain the actual implementation of the quadrature
- Note
- This method may only be used in derived classes.
- Returns
- a reference to the actual implementation of the quadrature
◆ twisted()
◆ twistId()
◆ codimension
codimension of the element integration point list
◆ dimension
template<class GridPartImp , class IntegrationTraits >
The documentation for this class was generated from the following file: