
Mapyrus Project Version 1.802

Simon Chenery (simoc@users.sourceforge.net)

10-May-2018

1

Contents

1 Introduction 7

2 Availability 11

3 Feedback 12

4 Tutorial and Cookbook 13

4.1 First Step . 13
4.2 Second Step . 13
4.3 Using Variables . 16
4.4 Building Procedures . 18
4.5 Displaying Lines . 20
4.6 Displaying Polygons . 29
4.7 Displaying Labels . 34
4.8 Displaying Data Stored In Text Files 40
4.9 Displaying Data Stored In Shape Files 43
4.10 Displaying Mapyrus World Map 45
4.11 Displaying OpenStreetMap Data 47
4.12 Displaying Data Stored In A Database 47
4.13 Displaying Geo-Referenced Images 51
4.14 Displaying Images From An OGC Web Mapping Service 53
4.15 Displaying Datasets and Images Stored In JAR Files 54
4.16 Displaying Many Datasets or Geo-Referenced Images 54
4.17 Updating Existing Output Files 55
4.18 Display Performance . 56
4.19 Displaying A Legend . 57
4.20 Using Attributes To Control Display 61
4.21 Displaying A Scalebar . 66
4.22 Displaying Piecharts And Histograms 67
4.23 Random Effects . 69
4.24 Using Transparency . 72
4.25 Color For Printing . 74
4.26 Shadow Effects . 75
4.27 Displaying Tables . 77
4.28 Wordwrapped Labels . 78
4.29 Formatting In Labels . 79
4.30 Avoiding Overlapping Labels . 81
4.31 Displaying Image Icons . 85
4.32 Including Encapsulated PostScript Files 87
4.33 Creating Groups in PDF Output Files 88
4.34 Mapyrus and JTS Topology Suite Functions 89
4.35 Mapyrus and Java PROJ.4 Library 92
4.36 Creating Landscape Output on Portrait Pages 93
4.37 Page Layout With Mapyrus . 94
4.38 Creating Multiple Page Output 97
4.39 Using PostScript Fonts In PostScript Output 97
4.40 Using PostScript Fonts In PDF Output 97
4.41 Using OpenType Fonts In PDF Output 98

2

4.42 Using TrueType Fonts In Output to Image Formats 98
4.43 Using Fonts In SVG Output . 98
4.44 Running Mapyrus As An HTTP Server 99
4.45 Passing Variables To Mapyrus HTTP Server Through URLs . . . 100
4.46 Returning HTML Pages From Mapyrus HTTP Server 101
4.47 Using JavaScript with Mapyrus HTTP Server 101
4.48 Setting Expiry Dates, Cookies and Redirections from Mapyrus HTTP Server102
4.49 Returning Additional Information From Mapyrus HTTP Server . 103
4.50 Using Mapyrus HTTP Server With OpenLayers 103
4.51 Using Mapyrus Servlet . 105
4.52 Using Mapyrus JSR 223 Script Engine Interface 105
4.53 Using Mapyrus In A Java Or Jython Application 106
4.54 Calling Java Functions From Mapyrus 106
4.55 Creating SVG Files With Event Handling 107
4.56 Building Mapyrus From Source 107
4.57 Sample Shapes And Patterns . 108

5 Reference 112

5.1 Software Requirements . 112
5.2 Usage . 112

5.2.1 Startup Configuration . 112
5.3 Language . 113
5.4 Internal Variables . 121
5.5 Commands . 124

5.5.1 addpath . 124
5.5.2 arc . 124
5.5.3 bezier . 124
5.5.4 blend . 125
5.5.5 box . 125
5.5.6 box3d . 125
5.5.7 chessboard . 125
5.5.8 circle . 126
5.5.9 clearpath . 126
5.5.10 clip . 126
5.5.11 closepath . 126
5.5.12 color . 126
5.5.13 cylinder . 127
5.5.14 dataset . 127
5.5.15 draw . 130
5.5.16 ellipse . 131
5.5.17 endpage . 131
5.5.18 eps . 131
5.5.19 eval . 131
5.5.20 eventscript . 131
5.5.21 fetch . 132
5.5.22 fill . 132
5.5.23 flowlabel . 132
5.5.24 font . 133
5.5.25 geoimage . 133
5.5.26 gradientfill . 134

3

5.5.27 guillotine . 134
5.5.28 hexagon . 135
5.5.29 httpresponse . 135
5.5.30 icon . 135
5.5.31 justify . 136
5.5.32 key . 136
5.5.33 label . 136
5.5.34 legend . 136
5.5.35 let . 137
5.5.36 linestyle . 137
5.5.37 local . 137
5.5.38 logspiral . 138
5.5.39 mimetype . 138
5.5.40 move . 138
5.5.41 newpage . 138
5.5.42 parallelpath . 146
5.5.43 pdf . 146
5.5.44 pdfgroup . 146
5.5.45 pentagon . 146
5.5.46 print . 147
5.5.47 protect . 147
5.5.48 raindrop . 147
5.5.49 reversepath . 147
5.5.50 rotate . 147
5.5.51 rdraw . 148
5.5.52 roundedbox . 148
5.5.53 samplepath . 148
5.5.54 scale . 148
5.5.55 selectpath . 148
5.5.56 setoutput . 149
5.5.57 shiftpath . 149
5.5.58 sinewave . 149
5.5.59 sinkhole . 149
5.5.60 spiral . 149
5.5.61 star . 150
5.5.62 stripepath . 150
5.5.63 stroke . 150
5.5.64 svg . 150
5.5.65 svgcode . 150
5.5.66 table . 151
5.5.67 tree . 151
5.5.68 triangle . 152
5.5.69 unprotect . 152
5.5.70 wedge . 152
5.5.71 worlds . 153

5.6 Error Handling . 153
5.7 Mapyrus HTTP Server . 153
5.8 Mapyrus Servlet . 154

4

List of Figures

1 Shapes, Symbols And Patterns 7
2 Average Monthly Temperatures 8
3 Strip Map of Railways Lines in East Kent 8
4 Sinusoidal Projection . 9
5 Vegetation Classes . 9
6 Inventory Levels at Warehouses 10
7 First Step . 13
8 Second Step . 14
9 Third Step . 15
10 Fourth Step . 16
11 Variables And Loops . 17
12 Variables And Functions . 17
13 Calling Procedures . 19
14 Procedures And Move Points . 19
15 Repeating Symbols Along A Line 21
16 Varying Repeated Symbols Along A Line 22
17 Combining Solid And Dashed Linestyles 22
18 Combining Several Linestyles . 23
19 Linestyle Using Begin And End Points 24
20 Linestyle Using Sample Points . 25
21 Parallel Linestyle . 26
22 Selecting Parts Of Path . 27
23 Selecting and Sampling Path . 28
24 Sine Wave Curves . 29
25 Hatching Polygons . 30
26 Cross-Hatching Polygons . 31
27 Displaying Points in Polygons . 32
28 Displaying Polygon Borders . 33
29 Displaying Polygons With Gradient Fill 33
30 Displaying Labels . 35
31 Rotated Labels . 35
32 Highlighted Labels . 37
33 Labels Along a Line . 38
34 Labelling Streets . 39
35 Labelling Polygons . 40
36 Text File tutorialdatasets1.txt . 40
37 Displaying Contents Of A Text File 42
38 GIS Export File streets.EE . 43
39 Displaying GIS Export Files . 44
40 Displaying ESRI Shape Files . 45
41 Displaying Mapyrus World Map 46
42 Displaying Geo-Referenced Images 52
43 Clipping Geo-Referenced Images 53
44 Updating An Existing Output File 57
45 Displaying A Legend . 59
46 Displaying Legend Entries Individually 61
47 Displaying Frequency Count Of Legend Entries 62
48 Using Attributes . 63

5

49 Using More Attributes . 65
50 Displaying A Scalebar . 67
51 Displaying Piecharts . 69
52 Displaying Histograms . 69
53 Random Color . 70
54 Random Rotation . 71
55 Random Position . 72
56 Transparent Colors . 73
57 Fading Lines . 74
58 CMYK Color . 75
59 Shadow Effects . 76
60 Displaying Tables In A Map . 77
61 Displaying Map And Tables Separately 79
62 Wordwrapped Labels . 80
63 Label Formatting . 81
64 Label Positioning . 83
65 More Label Positioning . 84
66 Icon Display . 85
67 Icon Fill Pattern . 86
68 Spray Paint Pattern . 87
69 Displaying An Encapsulated PostScript File 88
70 Buffer Function . 90
71 Contains Function . 92
72 Difference Function . 93
73 Mollweide Projection . 94
74 Rotated Landscape Page . 94
75 Page Layout . 109
76 Sample Shapes And Patterns 1 110
77 Sample Shapes And Patterns 2 111

6

1 Introduction

Mapyrus is software for creating plots of points, lines, polygons and labels to
PostScript (high resolution, up to A0 paper size), Portable Document Format
(PDF), Scalable Vector Graphics (SVG) format and web image output formats.

Mapyrus is open source software and is implemented entirely in Java enabling
it to run on a wide range of operating systems.

The software combines the following four features.

1. A Logo or turtle graphics program.

An imaginary pen is moved around a page, creating shapes that are drawn
into an image file. Reusable routines are built up using a BASIC-like lan-
guage. Branching and looping constructs enable complex shapes, symbols,
patterns and graphs to be be defined.

See Figure 1.

Z

Chelsea Arsenal Spurs

Turtle Sightings (Week 13)

0
50

100
150
200

M T W T F S S

Figure 1: Shapes, Symbols And Patterns

2. Reading and displaying of geographic information system (GIS) datasets,
text files, or tables held in a relational database (including spatially ex-
tended databases such as Oracle Spatial, PostGIS and MySQL).

Drawing routines are applied to geographic data to produce annotated and
symbolized maps and graphs. Attributes of the geographic data control
the color, size, annotation and other characteristics of the appearance of
the geographic data. Scalebars, legends, coordinate grids and north arrows
are also available.

See Figures 2, 3, 4, 5 and 6.

7

10
20
30°C

SYDNEY

10
20
30°C

BRISBANE

10
20
30°C

PERTH

10
20
30°C

DARWIN

10
20
30°C

ADELAIDE

10
20
30°C

HOBART

Figure 2: Average Monthly Temperatures of Australian Cities (degrees Celsius)

Ash
fo

rd

Wye
Chilham

Chartham
Canterbury West

Ham Street
Appledore

Rye

W
es

te
nh

an
ge

r

San
dli

ng
Folk

es
to

ne
 W

es
t

Folk
es

to
ne

 C
en

tra
l

Dov
er

 P
rio

ry

Kearsney
Shepherds Well

M
ar

tin
 M

ill
W

alm
er

Dea
l

San
dw

ich

Figure 3: Strip Map of Railways Lines in East Kent

8

Figure 4: Sinusoidal Projection

Bare Rock

Grassland

Marsh

Water

Wheat Field

0 1 2 3 4 5
kilometers

N

E

S

W

Figure 5: Vegetation Classes

9

Pasing

Oberschleißheim

Feldkirchen

bedeutet 1000 Kasten

Figure 6: Inventory Levels at Warehouses

3. Integration with the freely-available JTS Topology Suite 1. This library
provides geometric algorithms such as buffering, point-in-polygon test and
polygon intersection.

4. Integration with the freely-available Java port of the PROJ.4 projection
library. 2

5. Flexibility. Running in one of three ways.

(a) As a stand-alone program for integration into scripts and batch tasks
(suitable for generating a one-off map or a series of similar maps from
a template showing different areas, or using different criteria for each
map). A simple graphical user interface is also provided.

(b) As a self-contained web server providing map and graph images to a
web application such as OpenLayers 3 via HTTP requests.

(c) As a Java Servlet in Apache Tomcat, generating map and graph
images in response to HTTP requests.

1Available from http://www.tsusiatsoftware.net/jts/main.html
2Available from http://www.jhlabs.com/java/maps/proj
3Available from http://www.openlayers.org

10

2 Availability

Mapyrus is released under the GNU Lesser General Public License. The soft-
ware, documentation and source code is available for download from
http://mapyrus.sourceforge.net.

For more information about licensing, see the file named COPYING.

11

3 Feedback

Send comments and bug reports by e-mail to

simoc@users.sourceforge.net

Success stories and good ideas for extensions to Mapyrus to make it more
useful are also welcome!

12

4 Tutorial and Cookbook

The following examples demonstrate how to use Mapyrus. Each example is also
included as a file in the userdoc subdirectory. All example files have file suffix
.mapyrus. This suffix is not required but makes identification of files to be
interpreted by Mapyrus easier.

4.1 First Step

Start the Mapyrus GUI by double-clicking the icon for the file mapyrus.jar to
run this file, or by entering the following command in a terminal window.

java -classpath mapyrus-dir /mapyrus.jar org.mapyrus.Mapyrus

From the GUI, select the menu option File�New Tab to create a new tab
to enter commands into. The new tab is named Untitled. Copy the following
commands into the new tab. These commands draw a line with a given color
and linestyle. Click the green arrow icon in the GUI to run the commands.

color "indigo"

linestyle 4, "round", "round"

move 5, 20

draw 20, 20, 5, 5, 20, 5

stroke

The output will appear in the GUI as in Figure 7.

Figure 7: First Step

4.2 Second Step

Replace the Mapyrus commands in the new tab with the following commands,
then click the green arrow icon to run the new commands.

Another simple example.

#

color "#bb0000" # dark red

box 5, 5, 25, 25

fill

13

In this example, color is set as a hex value instead of a name, a rectangle
is defined with the box command and the fill command is used to flood fill
it. Anything on a line following a hash (#) character that is not in quotes is
ignored by Mapyrus. Figure 8 shows the output of these commands.

Figure 8: Second Step

Again, replace the commands with the following commands and run them.

linestyle 0.1

color "rgb", 1, 1, 0

move 5, 15

arc 1, 15, 15, 25, 15

arc -1, 25, 5, 15, 5

rdraw -10, 0

closepath

fill

color "rgb", 0, 0.33, 0

stroke

Clear path so we can begin a new shape.

#

clearpath

color "rgb", 0, 0, 0.7

move 30, 5

draw 30, 25, 60, 25, 60, 5, 30, 5

move 40, 8

draw 50, 8, 45, 22, 40, 8

fill

This example demonstrates drawing circular arcs, giving the direction (a
positive value for clockwise and a negative value for anti-clockwise), center point
and end point, drawing line segments relative to the last point in the path
with the rdraw command, closing the path back to the starting point with the
closepath command and yet another way of defining color. After being filled,
the path remains and is used again to draw the outline of the shape. To clear
the path before drawing another shape the clearpath command is used. The
second shape contains an island (or hole). When a shape is self-intersecting or
contains islands, the winding rule is used for determining which areas get filled.
The output of these commands is shown in Figure 9.

14

Figure 9: Third Step

The Mapyrus newpage command sends the output to a file instead of dis-
playing it in the GUI. Replace the commands with the following commands and
run them.

newpage "pdf", "tutorialfirst4.pdf", 130, 27

clearpath; color "Firebrick"; hexagon 7, 17, 6; fill

clearpath; color "orange"; triangle 7, 17, 4, 0; fill

clearpath; color "Forest Green"; circle 22, 17, 5.5

star 22, 17, 5, 5; stroke

clearpath; color "indigo"; wedge 37, 15, 8, 45, 90; fill

clearpath; color "black"; ellipse 50, 17, 2.5, 5;

ellipse 50, 17, 5, 2.5; stroke

clearpath; color "blue"; linestyle 0.5, "round", "round"

move 60, 15; bezier 70, 25, 70, 20, 62, 15; stroke

clearpath; color "SlateGray"; roundedbox 75, 15, 85, 22, 2.5; fill

clearpath; box3d 90, 15, 95, 20; color "yellow"; fill; color "black"; stroke

clearpath; pentagon 108, 17, 5; color "orange"; fill

clearpath; color "Steel Blue"; spiral 6, 6, 5, 5, 0; stroke

clearpath; cylinder 22, 5, 6, 2.5; color "yellow"; fill; color "black"; stroke

clearpath; color "dodgerblue"; raindrop 38, 5, 2.5; fill

clearpath; color "crimson"; move 45, 5; sinewave 52, 5, 4, 4; stroke

clearpath; color "black"; move 240, 20; chessboard 60, 2, 66, 8, 1; fill

clearpath; color "dark khaki"; logspiral 80, 5, 0.1, 0.2, 3.25, 0; stroke

This example demonstrates drawing various shape using circle, hexagon,

15

triangle, star, wedge, ellipse, bezier, roundedbox, box3d, pentagon, spiral,
cylinder, raindrop sinewave, chessboard and logspiral commands. The
output is as in Figure 10 and is saved in PDF format in file tutorialfirst4.pdf.

Figure 10: Fourth Step

Select the menu option File�Save Tab to save the commands to a file named
first4.mapyrus, then File�Exit to exit from the Mapyrus GUI. Open a ter-
minal window and run the following command.

java -classpath mapyrus-dir /mapyrus.jar org.mapyrus.Mapyrus first4.mapyrus

This runs Mapyrus without a GUI, reading commands from file first4.mapyrus
and creating file tutorialfirst4.pdf with the same output as in Figure 10.

Examples in following sections create output in Encapsulated PostScript
(EPS) format for direct inclusion in this manual. Remove the newpage command
from the examples to display the output in the Mapyrus GUI instead.

4.3 Using Variables

Use variables and conditional tests to vary the appearance of the display. Vari-
ables named c1 and c2 are used in the following example. The variable Mapyrus.page.width
is set by Mapyrus automatically. The output of this example is shown in Figure
11.

newpage "eps", "tutorialvar1.eps", 50, 50

color "green"

let c1 = 1

while c1 < Mapyrus.page.width

do

let c2 = Mapyrus.page.width - c1

clearpath

move c1, 0

draw 0, c2

stroke

let c1 = c1 + 4

done

The second example demonstrates the use of the length and substr func-
tions, the Java API function java.lang.Integer.parseInt and stepping through
a string one element at a time. The output of this example is shown in Figure
12.

16

Figure 11: Variables And Loops

newpage "eps", "tutorialvar2.eps", 70, 20

Set binary sequence

#

let seq = java.lang.Integer.toBinaryString(45678)

let seqlen = length(seq)

Draw sequence, showing black bars for bits

that have the value '1'.

#

let i = 1

while i <= seqlen

do

clearpath

box i * 4, 5, i * 4 + 3, 15

if (substr(seq, i, 1) eq "1")

then

color "black"

else

color "yellow"

endif

fill

let i = i + 1

done

Figure 12: Variables And Functions

17

4.4 Building Procedures

Store frequently used sequences of commands in a procedure. A procedure has
a unique name, takes a fixed number of arguments and may be called from any
place where a command is expected.

Private variables in a procedure are defined with the local command.
When a procedure is called, the graphics state is saved (see page 121), the

commands for the procedure are executed and then the graphics state is restored
before returning.

The following example shows a simple procedure named trail. The output
of this example is shown in Figure 13.

begin trail grade

Draw a line marking a park trail. Line color and

style depends on grade of trail.

#

if grade eq 'vehicle'

then

color "black"

linestyle 0.5

elif grade eq 'maintained'

then

color "gray"

linestyle 0.5, 'butt', 'bevel', 0, 2, 2

else

Unmaintained track is dotted line.

#

color "#A52A2A"

linestyle 0.5, 'butt', 'bevel', 0, 1, 1

endif

stroke

end

newpage "eps", "tutorialprocedures1.eps", 60, 30

Draw trails of differing grades. In a real application this

data would be read from a Geographic Information System (GIS).

#

clearpath

move 10, 10

draw 15, 16, 26, 24, 38, 29

trail 'vehicle'

clearpath

move 17, 16

draw 24, 15, 29, 12, 34, 5

trail 'maintained'

clearpath

move 24, 23

draw 12, 26, 6, 28

trail 'maintained'

18

clearpath

move 30, 11

draw 36, 9, 40, 10, 46, 9, 54, 8

trail 'unmaintained'

Figure 13: Calling Procedures

If the current path contains only points added with move commands when
a procedure is called, then the procedure is called once for each point with the
origin moved to that point. This permits several symbols to be drawn easily
and is demonstrated in the following example. The output of this example is
shown in Figure 14.

begin waypoint

Draw waypoint symbol.

#

color "red"

box -2, -2, 2, 2

stroke

clearpath

move -2, -2

draw -2, 2, 2, -2

fill

end

newpage "eps", "tutorialprocedures2.eps", 60, 30

clearpath

move 7, 5; move 16, 22; move 22, 11; move 34, 17; move 44, 9

waypoint

Figure 14: Procedures And Move Points

19

Put frequently used procedures in a separate file and use an include line
to include it in other files. When this is done for the previous example, the
procedure is put in a file.

This file is tutorialprocedures3.mapyrus

begin waypoint

Draw waypoint symbol.

#

color "red"

box -2, -2, 2, 2

stroke

clearpath

move -2, -2

draw -2, 2, 2, -2

fill

end

and the file containing the commands to execute

This file is tutorialprocedures4.mapyrus

include tutorialprocedures3.mapyrus

newpage "eps", "tutorialprocedures4.eps", 60, 30

clearpath

move 7, 5; move 16, 22; move 22, 11; move 34, 17; move 44, 9

waypoint

4.5 Displaying Lines

Simple solid line styles or dashed line styles are set with the linestyle com-
mand. More complex line styles are built using symbols repeated along a line
or combinations of linestyles, plotted on top of each other.

To draw a line with repeated symbols, use the samplepath command to
replace the path with evenly spaced sample points and then call a procedure to
draw a symbol at each sample point. The following example demonstrates this,
with the output shown in Figure 15.

begin arrow

Draws a filled '|>' symbol.

#

move -1, -1

draw -1, 1, 2, 0

fill

end

newpage "eps", "tutoriallines1.eps", 60, 30

color "orange"

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 45, 25

20

draw 35, 25, 35, 10, 5, 10

samplepath 5, 2.5

arrow

Figure 15: Repeating Symbols Along A Line

To vary the symbols that are drawn along the line, use a variable to count the
number of symbols along the line and a conditional test to draw different symbols
at different positions along the line. The following example demonstrates this,
with the output shown in Figure 16.

begin spike

move -1, 0

let spikeCounter = spikeCounter + 1

Alternate between long and short spikes.

#

if spikeCounter % 2 == 0

then

draw 0, -3, 1, 0

else

draw 0, -6, 1, 0

endif

fill

end

newpage "eps", "tutoriallines2.eps", 60, 30

clearpath

move 5, 5

bezier 5, 30, 55, 5, 55, 25

samplepath 3, 1.5

let spikeCounter = 0

spike

The next example demonstrates combining solid and dashed linestyles. For
best results display all lines with a solid linestyle, then display all lines again
with a dashed linestyle. The output of this example is shown in Figure 17.

newpage "eps", "tutoriallines3.eps", 60, 30

Demonstrate combination of solid and dashed linestyles.

#

clearpath

21

Figure 16: Varying Repeated Symbols Along A Line

move 5, 5

draw 45, 5

arc -1, 45, 15, 45, 25

draw 15, 25

arc -1, 15, 20, 15, 15

draw 35, 15

linestyle 2.5, 'butt', 'round'

color 'black'

stroke

linestyle 1.8, 'butt', 'round', 1, 2, 2

color 'yellow'

stroke

Figure 17: Combining Solid And Dashed Linestyles

The following example demonstrates combining thick and thin linestyles
and symbols at sampled points. For best results display all lines with a thick
linestyle, then display all lines again with a thin linestyle. The output of this
example is shown in Figure 18.

begin highway name

Force symbol to appear upright, regardless of

orientation of line at point where symbol is drawn.

#

rotate -Mapyrus.rotation

Draw rectangle, then label inside it.

#

box -3, -2, 3, 2

color "blue"

fill

22

clearpath

color "white"

font "Helvetica", 3

justify "center"

move 0, -1

label name

end

newpage "eps", "tutoriallines4.eps", 90, 30

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 55, 15

arc 1, 65, 15, 65, 25

draw 85, 25

Demonstrate overplotting of lines.

#

color 'red'

linestyle 1.32, 'round', 'round'

stroke

color 'yellow'

linestyle 0.3

stroke

Draw path one more time as symbols showing name of highway.

#

samplepath 17, 9

highway 'A99'

A99 A99 A99

A99

A99

Figure 18: Combining Several Linestyles

The following two examples demonstrate creating sample points from the
path to generate further line styles, with the output shown in Figures 19 and
20.

begin arrowhead r

Draw arrowhead rotated to point to end of line.

#

rotate r

move 5, 2

draw 0, 0, 5, -2

closepath

23

fill

end

begin arrowstart

Split path into points with large spacing so there will be

only one sample point at start of line. Draw arrowhead there.

#

samplepath 99999, 0

arrowhead 0

end

begin arrowend

Draw arrowhead at end of line.

#

samplepath -99999, 0

arrowhead 180

end

newpage "eps", "tutoriallines5.eps", 60, 30

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 55, 15

draw 55, 25

linestyle 0.3

color '#a020f0'

stroke

Demonstrate drawing a line with arrows at both ends like <---->

#

arrowstart

arrowend

Figure 19: Linestyle Using Begin And End Points

begin quarterLabel

Drawing tick and label at intermediate position along line.

#

if percent < 0 or percent > 100

then

return

endif

Draw triangle pointing to position on line.

24

#

triangle 0, -1, 1, 0

fill

Label

#

clearpath

move 0, 2

justify "center"

font "Helvetica", 3

label percent . "%"

let percent = percent + 25

end

begin labelQuarters pathLen

Divide path into quarters and drawing ticks and percentage

label at points 1/4, 2/4, 3/4 positions along line.

#

samplepath pathLen / 4, 0

let percent = 0

quarterLabel

end

newpage "eps", "tutoriallines6.eps", 60, 30

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 55, 15

draw 55, 25

linestyle 0.1

color '#006400'

stroke

labelQuarters Mapyrus.path.length

0% 25% 50% 75
%

10
0%

Figure 20: Linestyle Using Sample Points

The next example demonstrates using the parallelpath command to dis-
play parallel lines following the original path, with the output shown in Figure
21.

newpage "eps", "tutoriallines7.eps", 80, 40

25

move 10, 10

draw 17, 32, 18, 33, 27, 33, 27, 31, 24, 31, 25, 16, 36, 19, 40, 25

arc 1, 41, 19, 37, 8

hexagon 70, 15, 8

move 50, 35

draw 60, 35, 60.3, 30, 60.6, 30, 60.9, 35, 70, 35

color "blue"

stroke

// Show dashed lines to the left and right of original line.

//

parallelpath 1, -1

color "indigo"

linestyle 0.1, "round", "round", 0, 2, 1

stroke

Figure 21: Parallel Linestyle

The next example demonstrates using the selectpath command to select
short sections at the start and end of the path and displaying them in different
colors to indicate the polarity of the connection between two points. The output
of this example is shown in Figure 22.

begin positive_bar

Display black bar at start of line to show positive end of connection.

selectpath 3, 5

color "black"

stroke

end

begin negative_bar

Display red bar at end of line to show negative end of connection.

selectpath Mapyrus.path.length - 8, 5

color "red"

stroke

end

26

begin voltage_line

linestyle 2, "square", "bevel"

color "gray70"

stroke

positive_bar

negative_bar

end

newpage "eps", "tutoriallines8.eps", 60, 30

move 5, 25

draw 35, 5

voltage_line

clearpath

move 35, 5

draw 55, 10, 56, 16

voltage_line

clearpath

move 35, 5

bezier 35, 15, 40, 20, 45, 27

voltage_line

Figure 22: Selecting Parts Of Path

The selectpath command is also useful for displaying lines that stop short
of the start and end points of the path, and for displaying lines that have thicker
and thinner sections in the middle, or at the ends of the lines.

The next example demonstrates combining the selectpath and samplepath

commands to display a different linestyle in the middle of each line. The output
of this example is shown in Figure 23.

begin zigzag_start

selectpath 0, 5

stroke

end

begin zigzag_end

selectpath 5 + numzigs * ziglen, 999999

stroke

end

begin zigzag_middle

27

Draw whole number of zigzag pattern in middle part of path.

#

selectpath 5, numzigs * ziglen

samplepath ziglen, 2

zig

end

begin zig

Draw zigzag symbol: /\/

#

move -ziglen / 2, 0

draw -ziglen / 4, 2, ziglen / 4, -2, ziglen / 2, 0

color "orange"

stroke

end

begin zigzag_line

linestyle 0.4, "round", "round"

color "dodger blue"

let ziglen = 4

let numzigs = floor((Mapyrus.path.length - 5 - 5) / ziglen)

zigzag_start

zigzag_middle

zigzag_end

end

newpage "eps", "tutoriallines9.eps", 60, 30

move 5, 25

draw 35, 25

zigzag_line

clearpath

move 7, 7

draw 47, 7, 47, 25

zigzag_line

Figure 23: Selecting and Sampling Path

Use the sinewave command to display a curved line between two points
instead of a straight line.

This is demonstrated in the following example, with the output shown in
Figure 24.

28

newpage "eps", "tutoriallines10.eps", 60, 30

move 5, 5

draw 45, 25

stroke

clearpath

move 30, 5

draw 55, 25

stroke

/*

* Draw lines a second time as sine wave curves.

*/

color "red"

linestyle 2

clearpath

move 5, 5

sinewave 45, 25, 2, 3

stroke

color "green"

clearpath

move 30, 5

sinewave 55, 25, 0.5, -4

stroke

Figure 24: Sine Wave Curves

4.6 Displaying Polygons

Polygon outlines are drawn with the stroke command and filled with the fill
command. To draw repeated stripes (also known as hatching) through the
polygon, use the clip command to limit the area displayed to inside the polygon,
then the stripepath command to replace the path with evenly spaced stripes
and then draw each stripe. The following example demonstrates this, with the
output shown in Figure 25.

newpage "eps", "tutorialpolygons1.eps", 60, 30

color "forestgreen"

29

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 45, 25

draw 35, 25, 35, 10, 5, 10, 5, 5

stroke # Draw outline of polygon.

clip "inside"

stripepath 3, 60

stroke # Draw hatch lines inside polygon.

Figure 25: Hatching Polygons

To fill a polygon with cross-hatching use procedures to draw each set of
hatch lines at different angles. Two procedures are used so that modifying the
current path with the stripepath command is isolated in one procedure and the
original path remains unmodified in the calling procedure. This is demonstrated
in the following example, with the output shown in Figure 26.

begin hatch45

clip "inside"

stripepath 4, 45

stroke

end

begin hatchMinus45

clip "inside"

stripepath 4, -45

stroke

end

begin crosshatch

linestyle 0.2

color "red"

stroke

hatch45

hatchMinus45

end

newpage "eps", "tutorialpolygons2.eps", 60, 30

clearpath

roundedbox 5, 3, 30, 25

crosshatch

30

clearpath

roundedbox 31, 5, 55, 27

crosshatch

Figure 26: Cross-Hatching Polygons

Use the stripepath and samplepath commands in combination to generate
a grid of points through the polygon, then call a procedure to draw a symbol
at each point. This is demonstrated in the following example, with the output
shown in Figure 27.

begin star6

Draws a 6 pointed star.

#

star 0, 0, 1.5, 6

fill

end

begin starfill

color "navy blue"

stroke

clip "inside"

Replace path with sample points covering the whole polygon.

#

stripepath 4, 0

samplepath 4, 0

color "goldenrod"

star6

end

newpage "eps", "tutorialpolygons3.eps", 60, 30

clearpath

move 5, 5

draw 45, 5

arc -1, 45, 15, 45, 25

draw 35, 25, 35, 10, 25, 10, 30, 25, 10, 25, 15, 10

draw 5, 10, 5, 5

starfill

To display a border around the inside of the polygon use the clip command
to limit the area displayed to inside the polygon and then draw the outline with

31

Figure 27: Displaying Points in Polygons

a thick linestyle. The following example demonstrates this, with the output
shown in Figure 28. Give the argument outside to the clip command to
display a border around the outside of a polygon instead.

begin borderthick c

clip "inside"

color c

linestyle 5

stroke

end

begin border c

Draw border as thick line on inside of polygon then solid border.

#

borderthick c

linestyle 0.1

color "black"

stroke

end

Display adjacent polygons, each with a thick interior border.

#

newpage "eps", "tutorialpolygons4.eps", 65, 40

clearpath

move 5, 5

draw 7, 31, 42, 33, 40, 19, 20, 19, 19, 24, 15, 24, 13, 5, 5, 5

border "pink"

clearpath

move 13, 5

draw 15, 24, 19, 24, 20, 19, 40, 19, 42, 9, 13, 5

border "yellow"

clearpath

move 42, 9

draw 40, 19, 42, 33, 48, 33, 56, 7, 42, 9

border "green"

To display polygons with a gradient fill pattern use the gradientfill com-
mand. This command fills the current path with colors that fade across the
polygon. The following example demonstrates fading from olive at the lower-
left corner of each polygon to white in all other corners of the polygon. The
output is shown in Figure 29.

32

Figure 28: Displaying Polygon Borders

begin oliveGradient

gradientfill "olive", "white", "white", "white"

color "black"

stroke

end

newpage "eps", "tutorialgradient.eps", 65, 40

clearpath

move 5, 5

draw 7, 31, 42, 33, 40, 19, 20, 19, 19, 24, 15, 24, 13, 5, 5, 5

oliveGradient

clearpath

move 13, 5

draw 15, 24, 19, 24, 20, 19, 40, 19, 42, 9, 13, 5

oliveGradient

clearpath

move 42, 9

draw 40, 19, 42, 33, 48, 33, 56, 7, 42, 9

oliveGradient

Figure 29: Displaying Polygons With Gradient Fill

33

4.7 Displaying Labels

Labels are displayed using the move command to define one or more points for
labelling, followed by a label command. The font and justification for labels
are set with the font and justify commands. Setting fonts, justification and
displaying multiple lines are demonstrated in the following example, with output
shown in Figure 30.

newpage "eps", "tutoriallabels1.eps", 125, 30, \

"isolatinfonts=Times-Roman"

// Draw a label containing o with umlaut and degree symbol,

// given as a Unicode code and an octal character code, with

// font also marked for ISO encoding in newpage command above.

//

color "black"

font 'Times-Roman', 10

clearpath

move 2, 5

label 'M\374nchen 17\u00B0'

// Draw a three line centered label.

//

clearpath

move 67, 18

color "red"

font 'Helvetica', 4

justify 'center'

label 'For Free Advice Call\n1-800-HOTLINE\n24 hours a day'

// Draw the same label at several points.

//

clearpath

justify 'left'

color "Orange"

move 85, 5

move 90, 15

move 95, 25

label 'READY'

// Draw symbols from ZapfDingbats font.

//

color "black"

font 'ZapfDingbats', 12

clearpath

move 105, 10

label chr(48) . chr(38)

Labels are displayed horizontally. Rotate the axes with the rotate command
before setting the font to display labels at an angle. This is demonstrated in
the following example, with output shown in Figure 31.

34

München 17°

For Free Advice Call
1-800-HOTLINE
24 hours a day

READY

READY

READY

✐✆

Figure 30: Displaying Labels

newpage "eps", "tutoriallabels2.eps", 40, 40

clearpath

move 20, 20

let r = 0

while r < 360

do

color "hsb", r / 360, r / 360, 0.6

rotate 20

let r = r + 20

font 'Times-Roman', 4 + r / 180

label 'Spirally'

done

Spirally
Spira

lly

S
pi

ra
lly

S
pi

ra
lly

S
pi

ra
lly

S
pi

ra
lly

Spira
lly

Spirally
Spirally Spirally
Spirally

S
pirally

S
pirally

S
pirally

S
pirally

Spirally

Spirally
Spirally

Figure 31: Rotated Labels

Several methods are available for changing the appearance of labels.
To highlight a label, draw the outline of each letter with a thick line. Then

draw the label again at the same position in a different color.
The stringwidth function (see Table 3 on page 114) calculates the width of

a label. This value is used to underline a label, draw a box surrounding a label,
or to join several labels together on a single line.

These techniques are demonstrated in the following example, with output
shown in Figure 32.

newpage "eps", "tutoriallabels3.eps", 100, 30

Draw label, then underline it.

#

35

font "Helvetica-Bold", 6

let h1 = "Abcdefg", h2 = "Hij"

move 5, 5

label h1

draw 5 + stringwidth(h1), 5

stroke

Draw box, then label inside it.

#

clearpath

roundedbox 5, 20 - 2, 5 + stringwidth(h1), 26

fill

clearpath

move 5, 20

color "yellow"

label h1

Draw one label, then another immediately following it

in a different color and font.

#

font "Palatino-Roman", 6

clearpath

color "red"

move 40, 4

label h1

color "blue"

shiftpath stringwidth(h1), 0

font "Palatino-Italic", 8

label h2

Draw yellow label with red outline to highlight it.

#

clearpath

move 35, 16

color "red"

font "Helvetica", 12, "outlinewidth=2"

label h1

color "yellow"

font "Helvetica", 12

label h1

Draw only outline of letter.

#

clearpath

move 82, 6

color "black"

font "Helvetica", 24, "outlinewidth=0.2"

label "A"

The flowlabel command is used to draw a label following along a line. This

36

Abcdefg

Abcdefg

AbcdefgHij

Abcdefg

Figure 32: Highlighted Labels

is useful for labelling streets or rivers.
Use of this command is demonstrated in the following example, with output

shown in Figure 33.

newpage "eps", "tutorialflowlabel1.eps", 120, 60

Draw label following J-shaped path.

#

font "Helvetica", 4

move 10, 5

draw 10, 40

arc 1, 20, 40, 30, 40

draw 30, 35

stroke

parallelpath -2

flowlabel 0, 15, "This was drawn with flowlabel command"

Draw river, with label just above it.

#

clearpath

move 50, 40

draw 55, 42, 60, 41, 64, 43, 69, 43, 74, 45, 79, 46, 85, 50, 93, 51

color "blue"

font "Helvetica-Bold", 4

stroke

parallelpath -1

flowlabel 0.5, 2, "Parramatta River"

Draw street with centered name.

#

clearpath

move 50, 20

draw 55, 22, 60, 21, 64, 23, 69, 23, 74, 25, 79, 26, 85, 30, 93, 31

linestyle 4, "round", "round"

color "red"

stroke

linestyle 3, "round", "round"

color "yellow"

37

stroke

color "black"

parallelpath 1.5

justify "center"

flowlabel 0.25, Mapyrus.path.length / 2, "Panorama Ave"

T
hi

s
w

as
 d

ra
w

n

with flowlabel com
m

and

Par r ama t t a R i v
e r

Panor ama Ave

Figure 33: Labels Along a Line

When labelling streets using the flowlabel command, labels will appear
above or below the street depending on whether the street was digitized left-
to-right or right-to-left. To ensure that all streets are labelled on the same
side, compare the Mapyrus.path.start.x and Mapyrus.path.end.x variables.
Reverse the direction of the streets digitized in the wrong direction using the
reversepath command. This is demonstrated in the following example, with
two streets digitized in opposite directions. The output is shown in Figure 34.

newpage "eps", "tutorialflowlabel2.eps", 120, 30

font "Helvetica", 4

linestyle 1

move 10, 10

draw 50, 20

stroke

if Mapyrus.path.start.x > Mapyrus.path.end.x

then

Street was digitized right-to-left. Change direction of street.

reversepath

endif

parallelpath -1

flowlabel 0.1, 3, "R PASTEUR"

clearpath

move 110, 10

draw 70, 20

38

stroke

if Mapyrus.path.start.x > Mapyrus.path.end.x

then

Street was digitized right-to-left. Change direction of street.

reversepath

endif

parallelpath -1

flowlabel 0.1, 3, "R VICTOR HUGO"

R PASTEUR
R VICTOR HUGO

Figure 34: Labelling Streets

The sinkhole command is used determine a position for a label in a polygon.
This command replaces the current path defining a polygon with a single point
in the middle of the polygon. This is demonstrated in the following example,
with output shown in Figure 35.

Draw outline of polygon, with label in the middle.

#

begin district name

stroke

sinkhole

font "Helvetica-Bold", 3

justify "center, middle"

label name

end

Display labelled polygons.

#

newpage "eps", "tutorialsinkhole.eps", 65, 40

clearpath

move 5, 5

draw 7, 31, 42, 33, 40, 19, 20, 19, 19, 24, 15, 24, 13, 5, 5, 5

district "Packer"

clearpath

move 13, 5

draw 15, 24, 19, 24, 20, 19, 40, 19, 42, 9, 13, 5

district "Hamilton"

clearpath

move 42, 9

draw 40, 19, 42, 33, 48, 33, 56, 7, 42, 9

district "Ashley"

39

Packer

Hamilton
Ashley

Figure 35: Labelling Polygons

If polygons are partially outside the page then use the guillotine command
to chop the polygon at the edge of the page before using the sinkhole command.

To calculate two label positions for a polygon, use the guillotine command
to cut the polygon into left and right (or top and bottom) halves and use the
sinkhole command to calculate a position in each half.

4.8 Displaying Data Stored In Text Files

The simplest source of data is a text file, with one record per line. The filename
and type of dataset to read is given in a dataset command. Then a fetch

command is used in a loop to read each record and split it into fields. Fields are
assigned to variables $1, $2, $3, . . . and the whole record is assigned to variable
$0.

Coordinates in GIS datasets are normally stored in a world coordinate sys-
tem such as Universal Transverse Mercator. To transform these coordinates
to millimeter coordinates on the page use the worlds command. This sets
a transformation to map a range of world coordinates onto the whole page.
All coordinates given for later addpath, move, arc, box, box3d, draw, circle,
ellipse, hexagon, pentagon, raindrop, spiral, star, triangle and wedge

commands are converted from world coordinate to page coordinates through
this transformation.

The following example demonstrates setting a world coordinate system, read-
ing geographic positions from text file shown in Figure 36, converting the posi-
tions to decimal values using the parsegeo function and displaying them. The
output of this example is shown in Figure 37.

Latitude/Longitude positions of South Pacific capital cities.

33.83S 148.04E Canberra/Australia

41.08S 174.91E Wellington/New Zealand

22.13S 166.50E Noumea/New Caledonia

17.69S 168.41E Vila/Fiji

9.48S 159.90E Honiara/Solomon Islands

9.37S 147.29E Port Moresby/Papua New Guinea

Figure 36: Text File tutorialdatasets1.txt

40

begin capitalCity name

Draw a labelled dot marking a capital city.

#

color "red"

box -1, -1, 1, 1

fill

clearpath

move 2, 0

font "Helvetica", 2.5

color "black"

label name

end

Plot the geographic data in text file tutorialdatasets1.txt

in an Encapsulated PostScript file.

#

newpage "eps", "tutorialdatasets1.eps", 85, 85

dataset "textfile", "tutorialdatasets1.txt", "comment=#"

worlds 150, -45, 180, -5

while Mapyrus.fetch.more

do

Draw label at each position read from text file.

#

fetch

print "DEBUG:", $0

clearpath

move parsegeo($2), parsegeo($1)

let cityAndCountryArray = split(substr($0, 16), "/")

capitalCity cityAndCountryArray[1] . "\n(" . cityAndCountryArray[2] . ")"

done

Gazeteer files, GPS waypoint files and export files of GIS datasets are also
read as text files.

For files containing lines and polygons, a loop and counter are used to read
all coordinates for each line and polygon.

For files containing header lines, use the fetch command outside of a loop
to skip these lines.

The following example demonstrates reading and displaying the GenaMap
GIS ZF19 format export file shown in Figure 38 containing line features. The
output is shown in Figure 39.

Draw the GenaMap export file streets.EE into a PNG file.

#

newpage "eps", "tutorialdatasets2.eps", 60, 60

dataset "textfile", "streets.EE", ""

worlds 324846, 1257086, 325300, 1257476

while Mapyrus.fetch.more

do

41

Canberra
(Australia)

Wellington
(New Zealand)

Noumea
(New Caledonia)

Vila
(Fiji)

Honiara
(Solomon Islands)

Port Moresby
(Papua New Guinea)

Figure 37: Displaying Contents Of A Text File

Header line for each feature contains coordinate count.

#

fetch

let nCoords = substr($0, 51, 5)

Fetch first point of feature and add it to path.

#

clearpath

fetch

move $1, $2

repeat (nCoords - 1)

do

Add the rest of feature's coordinates to the path.

#

fetch

draw $1, $2

done

Draw each line in red.

#

color 'red'

stroke

done

42

1LINE DOYALSON STREET 2

325061.6800000000 1257380.2700000000 .0000000000

324930.4500000000 1257397.4400000000 .0000000000

2LINE WARD STREET 5

324875.9000000000 1257182.7600000000 .0000000000

324892.4700000000 1257193.0000000000 .0000000000

324908.5000000000 1257203.0000000000 .0000000000

324956.0000000000 1257257.5000000000 .0000000000

324979.2900000000 1257284.4600000000 .0000000000

3LINE CAMBRIDGE AVENUE 3

325061.6800000000 1257380.2700000000 .0000000000

325107.5000000000 1257433.5000000000 .0000000000

325130.9300000000 1257456.2700000000 .0000000000

4LINE ANDERSON ROAD 3

325257.4600000000 1257100.0800000000 .0000000000

324887.0000000000 1257161.0000000000 .0000000000

324875.9000000000 1257182.2600000000 .0000000000

5LINE MILTON STREET 3

325274.7500000000 1257206.6800000000 .0000000000

325029.0000000000 1257245.0000000000 .0000000000

324979.2100000000 1257284.4800000000 .0000000000

6LINE WARD STREET 2

325061.6800000000 1257380.2700000000 .0000000000

324979.2200000000 1257284.4400000000 .0000000000

Figure 38: GIS Export File streets.EE

4.9 Displaying Data Stored In Shape Files

Reading data from an ESRI Shape file format is similar to reading a text file. A
Shape file defines a bounding rectangle so the internal variables Mapyrus.dataset.min.x,
Mapyrus.dataset.min.y, Mapyrus.dataset.max.x, and Mapyrus.dataset.max.y
are available to set world coordinates to the bounding rectangle of the dataset.

An ESRI Shape file also defines field names. Fields fetched with the fetch

command are assigned to variables with the same name as the field. The geom-
etry for each record is assigned to a variable named GEOMETRY and is added to
the current path with the addpath command.

The following example demonstrates reading an ESRI Shape file containing
points and attribute fields named HOTELNAME and STARRATING. The attribute
fields are used as labels and to control the appearance of the symbols.

begin hotel name, nStars

Draw hotel name inside a box the same width as the name.

#

font 'Helvetica-Bold', 3

color '#A00000'

clearpath

move 2, 0

box 2, 0, 2 + stringwidth(name), 4

43

Figure 39: Displaying GIS Export Files

move 0, 2

draw 2, 4, 2, 0, 0, 2

fill

clearpath

move 2, 1

color 'white'

label name

Draw box below hotel name, then show number of stars inside it.

#

clearpath

color '#A00000'

let stars = '* ' x nStars

box 2, -2, stringwidth(stars) + 3, 0

fill

clearpath

color 'yellow'

move 2, -2

label ' ' . stars

end

Display the ESRI Shape file hotel.shp in a PostScript file.

#

newpage "eps", "tutorialdatasets3.eps", 65, 50

dataset "shapefile", "hotel.shp", ""

Expand bounding box to the right so labels don't run off edge of page.

#

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x + Mapyrus.dataset.width / 5, Mapyrus.dataset.max.y

while Mapyrus.fetch.more

do

fetch

clearpath

44

addpath GEOMETRY

print "DEBUG:", GEOMETRY, HOTELNAME, STARRATING

hotel HOTELNAME, STARRATING

done

REGENCY HOTEL
 * * * * METRO INN

 * * * INTERCITY HOTEL
 * *

COMFORT INN
 * *

Figure 40: Displaying ESRI Shape Files

4.10 Displaying Mapyrus World Map

Mapyrus includes a map of world countries named countries and a map of
capital cities named capitals internally.

The following example demonstrates displaying a map of Europe and Eu-
ropean capital cities. Countries are assigned a color code in the dataset, with
neighbouring countries having different colors. The output is shown in Figure
41.

newpage "eps", "tutorialdatasets4.eps", 160, 100, "background=lightblue"

worlds -25, 30, 35, 68

6-class Pink-Yellow-Green diverging scheme from http://colorbrewer2.org

let c = ["#c51b7d", "#e9a3c9", "#fde0ef", "#e6f5d0", "#a1d76a", "#4d9221"]

linestyle 0.1, "round", "round"

dataset "internal", "countries", "xmin=-25 ymin=30 xmax=35 ymax=68"

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

Lookup color for country from color code number.

#

color c[COLORCODE]

fill

color "grey"

stroke

45

done

begin capitaldot

box -0.5, -0.5, 0.5, 0.5

fill

end

color "black"

font "Helvetica", 3

dataset "internal", "capitals", "xmin=-25 ymin=30 xmax=35 ymax=68"

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

capitaldot

label " " . CAPITAL

done

 Mariehamm

 Tirana

 Algiers

 Andorra la Vella

 Vienna

 Minsk

 Brussels

 Sarajevo
 Sofia

 Zagreb

 Nicosia

 Prague

 Copenhagen

 Cairo

 Tallinn

 Torshavn
 Helsinki

 Paris

 Gaza City

 Berlin

 Gibraltar

 Athens

 Saint Peter Port

 Budapest

 Reykjavik

 Dublin
 Douglas

 Rome

 Saint Helier

 Pristina

 Riga

 Tripoli

 Vaduz

 Vilnius

 Luxembourg

 Skopje

 Valletta

 Chisinau

 Monaco
 Podgorica

 Rabat

 Amsterdam

 Nicosia

 Oslo

 Warsaw

 Lisbon

 Bucharest San Marino

 Bratislava

 Ljubljana

 Madrid

 Stockholm

 Bern

 Tunis

 Ankara

 Kiev
 London

 Vatican City

 Belgrade

Figure 41: Displaying Mapyrus World Map

46

4.11 Displaying OpenStreetMap Data

The OpenStreetMap Protocol enables street map data to be fetched using HTTP
requests.

The following example demonstrates reading and displaying street data from
the OpenStreetMap server.

newpage "eps", "tutorialdatasets4.eps", 210, 297

let x1 = 151.1, y1 = -34, x2 = 151.2, y2 = -33.9

let url = "http://api.openstreetmap.org/api/0.5/map?bbox=" . \

x1 . "," . y1 . "," . x2 . "," . y2

dataset "osm", url, ""

worlds x1, y1, x2, y2

while Mapyrus.fetch.more

do

fetch

if TYPE eq "way"

then

if TAGS["highway"] eq "primary"

then

linestyle 0.7

color "red"

elif TAGS["highway"] eq "secondary"

then

linestyle 0.4

color "orange"

elif TAGS["natural"] eq "coastline"

then

linestyle 0.1

color "lightgreen"

else

linestyle 0.1

color "black"

endif

clearpath

addpath GEOMETRY

stroke

endif

done

To avoid repeated requests to the OpenStreetMap server it is also possible
to save the OpenStreetMap server output to a file and give the filename in the
dataset command instead.

4.12 Displaying Data Stored In A Database

A simplistic method of reading from a relational database is to use a database
front-end program to print selected records to a file and then to read this in
Mapyrus.

47

Given the file simplistic.mapyrus containing the following commands,

newpage "png", "simplistic.png", 100, 100, "background=white"

worlds 1000, 1000, 2000, 2000

dataset "textfile", "-", "delimiter=|"

while Mapyrus.fetch.more

do

fetch

clearpath

color $3

star $1, $2, 3, 5

fill

done

Then data read from an sqlite database is displayed as stars in a PNG image
using commands like:

sqlite db77 "select X, Y, Color from SITES" > sites.txt

java -classpath mapyrus.jar org.mapyrus.Mapyrus simplistic.mapyrus < sites.txt

On UNIX operating systems, pipe the output directly from the database
front-end program to Mapyrus. This is demonstrated in the following example,
displaying roads fetched as OGC WKT strings from a PostGIS database.

psql -A -t -c 'select AsText(Geom) from ROADS' pogo | \

java -classpath mapyrus.jar org.mapyrus.Mapyrus -e '

newpage "png", "simplistic.png", 100, 100, "background=white"

worlds 170000, 470000, 220000, 540000

dataset "textfile", "-", "delimiter=|"

while Mapyrus.fetch.more

do

fetch

clearpath

addpath $1

stroke

done'

Amore efficient solution is to read from a relational database within Mapyrus
using the Java JDBC interface and a JDBC driver provided as part of the
database. The JAR file containing the JDBC driver must be included in the
-classpath option when Mapyrus is run.

For example, when accessing a PostgreSQL database from a Linux machine,
ensure that the postgresql-jdbc package is installed and use a command like:

java -classpath mapyrus.jar:/usr/share/pgsql/pg73b1jdbc1.jar \
org.mapyrus.Mapyrus tutorialdataset6.mapyrus

The JDBC driver for PostgreSQL is available from http://jdbc.postgresql.org.
A JDBC driver for MySQL is available from

http://www.mysql.com/products/connector/j.
A JDBC driver for Oracle is included in the $ORACLE HOME/jdbc directory

of an Oracle installation.

48

Each field in a database table has a name. Fields fetched with the fetch

command are assigned to variables with the same name as the field. In the fol-
lowing example three fields are fetched from each row and assigned to variables
named longitude, latitude and assetcode.

An SQL where clause is used to limit data read from the database to inside
the area of interest.

begin asset

Draw filled square

#

box -1, -1, 1, 1

fill

end

Display the geographic data held in RDBMS table in a PNG file.

#

newpage "png", "tutorialdatasets5.png", 60, 60

let x1 = 151.03, y1 = -31.25, x2 = 151.04, y2 = -31.24

Build SQL statement to fetch point data in area of interest.

#

let sql = "select Assetcode, Longitude, Latitude from SURVEY \

where Logdate > '1 Dec 2001' and LogDate < '15 Dec 2001' \

and Longitude >= " . x1 . " and Latitude >= " . y1 . " \

and Longitude <= " . x2 . " and Latitude <= " . y2

dataset "jdbc", sql, "driver=org.postgresql.Driver \

url=jdbc:postgresql:nemo user=postgres password=postgres"

Print names of fields being fetched from database for debugging,

as some databases convert all field names to uppercase or lowercase.

#

let i = 1

while i <= length(Mapyrus.dataset.fieldnames)

do

print "DEBUG: ", Mapyrus.dataset.fieldnames[i]

let i = i + 1

done

Fetch and draw each point, varying color depending on asset code.

#

worlds x1, y1, x2, y2

while Mapyrus.fetch.more

do

clearpath

fetch

move longitude, latitude

if assetcode eq "BN" or assetcode eq "BZ"

then

49

color "red"

elif assetcode eq "CN"

then

color "blue"

else

color "green"

endif

asset

done

For databases supporting the OpenGIS Simple Features Specification For

SQL, add fields containing OGC WKT geometry strings or WKB geometry
values to the current path with an addpath command. Using WKT geometry
strings is less efficient than WKB geometry strings because all geometry must
be converted to a text string and then back to a geometry.

The following example demonstrates fetching a geometry field named geom

from a PostGIS database as a WKT string and displaying it.

Display the geographic data held in a PostGIS database

in a PostScript file.

#

newpage "eps", "tutorialdatasets7.eps", 85, 85

let x1 = 191232, y1 = 243117, x2 = 191234, y2 = 243119

Build spatially extended SQL statement to fetch

road network data inside an area of interest.

#

let sql = "SELECT AsText(GEOM) AS GEOM FROM ROADS_GEOM \

WHERE GEOM && GeometryFromText('BOX3D(" . x1 . " " . y1 . \

"," . x2 . " " . y2 . ")'::box3d,-1)"

Fetch each road as an OGC WKT geometry string and draw it.

#

dataset "jdbc", sql, "driver=org.postgresql.Driver \

url=jdbc:postgresql:pogo user=postgres password=postgres"

worlds x1, y1, x2, y2

while Mapyrus.fetch.more

do

clearpath

fetch

addpath geom

stroke

done

The next example demonstrates fetching geometry from an Oracle database
as WKB geometry values and displaying it. The Get WKB function is used to
convert Oracle Spatial geometry to WKB geometry values.

Display the spatial data held in an Oracle database

50

in a PostScript file.

newpage "eps", "tutorialdatasets7.eps", 85, 85

worlds 0, 0, 20, 20

let sql = "select C.Shape.Get_WKB() AS WKB \

from COLA_MARKETS C where C.Name<>'cola_d'"

dataset "jdbc", sql, "driver=oracle.jdbc.OracleDriver \

url=jdbc:oracle:oci:@DEMO user=system password=manager"

while Mapyrus.fetch.more

do

fetch

clearpath

addpath WKB

stroke

done

Mapyrus is also able to read Oracle Spatial columns with type MDSYS.SDO GEOMETRY

directly without the Get WKB function. When reading Oracle Spatial columns di-
rectly the sdoapi.jar JAR file from an Oracle database installation containing
Oracle Spatial data types must also be included in the Java classpath.

4.13 Displaying Geo-Referenced Images

To display a geo-referenced image use the geoimage command. A ”worlds” file
with .tfw suffix is required, containing the world coordinate range covered by
the image.

The following example demonstrates displaying the image australia.png

as a background image, then displaying the data contained in an ESRI Shape
file over the image. The output is shown in Figure 42.

newpage "eps", "tutorialgeoimage1.eps", 70, 70

dataset "shapefile", "coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

geoimage "australia.png", "brightness=0.9"

color "red"

linestyle 1, "round", "round"

while Mapyrus.fetch.more

do

clearpath

fetch

addpath GEOMETRY

stroke

done

51

Figure 42: Displaying Geo-Referenced Images

Some sets of geo-referenced images are provided as a grid of trapezoidal
shaped images. To display several of these images it is necessary to clip each im-
age as it is displayed to avoid overwriting neighbouring images. To define a clip
polygon for a geo-referenced image, use the clipfile option to the geoimage

command.
An alternative method of clipping an image is to use the clip command

to set a clip path to polygons read from a dataset. The following example
demonstrates this, clipping the image so that only parts of the image inside
coastline polygons are displayed. The output is shown in Figure 43.

newpage "eps", "tutorialgeoimage2.eps", 70, 70

dataset "shapefile", "coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

Save all coastline polygons into path, then clip to path.

#

while Mapyrus.fetch.more

do

fetch

addpath GEOMETRY

done

clip "inside"

Draw image, clipped to coastline.

#

geoimage "australia.png"

52

Figure 43: Clipping Geo-Referenced Images

4.14 Displaying Images From An OGC Web Mapping Ser-

vice

An OGC Web Mapping Service (WMS) is an HTTP server that provides geo-
referenced images. To fetch a geo-referenced image from a WMS and display it
on the page use the geoimage command.

The following example demonstrates building a URL for a WMS request
from a UMN Mapserver, defining the layers to be fetched and world coordinate
range of the area of interest. The UMN Mapserver must be configured to return
24 bit PNG images as Mapyrus cannot read the default PNG format returned
by Mapserver.

newpage "eps", "tutorialgeoimage3.eps", 85, 85

let x1 = 393381, y1 = 5207990, x2 = 495758, y2 = 5305370

worlds x1, y1, x2, y2

Build URL to fetch area covered by page from a Web Mapping Service.

#

let url = "http://tardis/cgi-bin/mapserv?map=demo.map&"

let url = url . "SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&"

let url = url . "LAYERS=dlgstln2,cities&STYLES=&SRS=EPSG:26915&"

let url = url . "FORMAT=image/png&"

let url = url . "BBOX=" . x1 . "," . y1 . "," . x2 . "," . y2 . "&"

let url = url . "WIDTH=" . round((x2 - x1) / 100) . "&"

let url = url . "HEIGHT=" . round((y2 - y1) / 100)

Fetch and display image.

#

geoimage url

53

4.15 Displaying Datasets and Images Stored In JAR Files

Java permits files stored inside a JAR file to be accessed using a URL. This is
especially useful for web applications where the software and data are commonly
packed together inside a single JAR or WAR file.

The following example demonstrates reading an image and ESRI Shape file
from inside of file mapyrus.jar.

newpage "eps", "tutorialgeoimage4.eps", 70, 70

dataset "shapefile", \

"jar:file:mapyrus.jar!/org/mapyrus/dataset/coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

geoimage "jar:file:mapyrus.jar!/org/mapyrus/dataset/australia.png"

color "pink"

while Mapyrus.fetch.more

do

clearpath; fetch; addpath GEOMETRY; fill

done

To include other datasets, unpack the file mapyrus.jar using the Java jar

program, add the datasets and create mapyrus.jar again.
Alternatively, create a new JAR file containing only the datasets and include

that JAR file in the classpath when running Mapyrus. In this case, the filename
in the URL is changed from mapyrus.jar to the new filename of the new JAR.

4.16 Displaying Many Datasets or Geo-Referenced Im-

ages

To display data contained in many files, use the listfiles function to obtain a
list of files in one or more directories matching a filename pattern. Then display
each dataset in a loop. Displaying from many ESRI Shape files is demonstrated
in the following example.

let allFiles = dir("H:\\data\\shape**.shp")

newpage "eps", "tutorialdatasets7.eps", 180, 260

worlds 1600000, 610000, 1770000, 710000

for i in allFiles

do

dataset "shapefile", allFiles[i], "dbffields="

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

stroke

54

done

done

A common method of efficiently selecting the data that overlaps the page
from hundreds of possible datasets and geo-referenced images is to create an
index ESRI Shape file with a polygon containing the bounding rectangle of
each dataset or image.

This ESRI Shape file index is then searched for overlapping polygons.
For ESRI Shape file datasets, the tile4ms program included in UMNMapserver4

is used to create an ESRI Shape file index.
For geo-referenced images, the gdaltindex program included in the gdal5

library is used to create an ESRI Shape file index.
The following example demonstrates searching an ESRI Shape file index for

images to display.

newpage "eps", "tutorialdatasets8.eps", "A4"

worlds 12000, 17000, 16000, 21000

Find polygons (that represent images) in ESRI Shape file index

that overlap world coordinates set for page.

#

let nTiles = 0

dataset "shapefile", "sydney-index.shp", \

"xmin=" . Mapyrus.worlds.min.x . " ymin=" . Mapyrus.worlds.min.y . \

" xmax=" . Mapyrus.worlds.max.x . " ymax=" . Mapyrus.worlds.max.y

while Mapyrus.fetch.more

do

fetch

let nTiles = nTiles + 1

Geo-referenced image filename stored in LOCATION attribute field.

#

let tiles[nTiles] = LOCATION

done

Display each overlapping image.

#

let i = 1

while i <= nTiles

do

geoimage tiles[i]

let i = i + 1

done

4.17 Updating Existing Output Files

To edit or draw over an existing image file or PostScript file use the update=true
option to the newpage command. This allows further data to be drawn over a
base map, or a watermark or logo to be added to a map.

4Available from http://mapserver.gis.umn.edu
5Available from http://www.gdal.org

55

Updating works for both files created by Mapyrus and files created by other
software.

This is demonstrated in the following example, drawing a grid over the out-
put file tutorialexisting1.eps (a copy of the output file from Figure 37 from
page 42). The output of this example is shown in figure Figure 44.

Open existing file 'tutorialexisting1.eps' for update.

New page size is ignored, the page size of existing file is used.

#

newpage "eps", "tutorialexisting1.eps", 50, 50, "update=true"

worlds 150, -45, 180, -5

Draw vertical grid lines.

#

color "grey"

let x = floor(Mapyrus.worlds.min.x / 5) * 5

while x < Mapyrus.worlds.max.x

do

clearpath

move x, Mapyrus.worlds.min.y

draw x, Mapyrus.worlds.max.y

stroke

let x = x + 5

done

Draw horizontal grid lines.

#

let y = floor(Mapyrus.worlds.min.y / 5) * 5

while y < Mapyrus.worlds.max.y

do

clearpath

move Mapyrus.worlds.min.x, y

draw Mapyrus.worlds.max.x, y

stroke

let y = y + 5

done

4.18 Display Performance

The following techniques help improve the display speed of large datasets.
Check the internal variable Mapyrus.worlds.scale before displaying a large,

detailed dataset. If the scale is too high then the details will not be legible so
skip display of the detailed part of the dataset. For example, display all streets
when zoomed in, but only highways when zoomed out.

Store two copies of the same data. One at high resolution and one at low
resolution. Select the dataset with the resolution closest to the current display
scale.

For dense data, with many points very close to each other, skip every second
piece of data in the dataset using two fetch commands together. When the

56

Canberra
(Australia)

Wellington
(New Zealand)

Noumea
(New Caledonia)

Vila
(Fiji)

Honiara
(Solomon Islands)

Port Moresby
(Papua New Guinea)

Figure 44: Updating An Existing Output File

dataset is in a database this is more efficiently done by ignoring odd numbered
rows using an SQL statement like:

select X, Y, Freq from SCATTER where MOD(rowid, 2) = 0

Set an upper limit on the number of rows fetched or the time for display by
checking the internal variables Mapyrus.fetch.count and Mapyrus.timer in a
loop and ending when the limit is exceeded.

4.19 Displaying A Legend

A cartographic rule is that a map display must include a legend. The key

command is used to save each entry to be include in a legend and the legend

command displays a legend.
A key command in a procedure defines a legend entry. Mapyrus saves each

legend entry encountered whilst executing commands. Each legend entry has a
description label and a type, defining whether the entry appears as a point, line
or box in the legend.

When display of all data is complete, points for legend entries are defined
with move commands and the legend command is used to display each legend
entry. Each legend entry is automatically displayed by calling the procedure in
which it was defined.

If insufficient move points are defined then some legend entries remain undis-
played.

Display the legend in a separate image file to prevent overwriting the map.

57

This is demonstrated in the following example. The two output files are
shown in Figure 45. Note that the legend entry for the procedure road is not
included in the legend because this procedure is not executed in the example.

begin river

Display current path as blue line, signifying a river.

#

key "line", "River"

color "blue"; linestyle 1; stroke

end

begin road

Display current path as red line, signifying a road.

#

key "line", "Road"

color "red"; linestyle 0.1; stroke

end

begin lake

Fill current path with light blue, signifying a lake.

#

key "box", "Lake"

color "cyan"; fill

end

begin church

Display a church symbol at current point.

#

key "point", "Church"

color "black"; linestyle 0.1

move -1, -1; arc 1, 0, -1, -1, -1; fill

clearpath; move 0, 0; draw 0, 2; move -1, 1; draw 1, 1; stroke

end

newpage "eps", "tutoriallegend1.eps", 50, 30, "background=grey90"

clearpath; move 5, 5; draw 7, 22, 6, 29, 23, 27, 21, 9, 5, 5

lake

clearpath; move 27, 3; draw 34, 28

river

clearpath; move 29, 9; draw 40, 7, 47, 3

river

clearpath; move 40, 16

church

Draw legend for map in a separate PostScript file, giving plenty

of move points for the legend entries.

#

58

newpage "eps", "tutoriallegend1legend.eps", 40, 40

clearpath; color "black"; move 5, 5, 5, 12, 5, 19, 5, 26, 5, 33

justify "middle"; font "Helvetica", 2.5

legend 4

Church

River

Lake

Figure 45: Displaying A Legend

To display each legend entry in a separate file use a loop, checking the
internal variable Mapyrus.key.count to find how many legend entries remain
to be displayed.

In each loop iteration, create a new output file, set a single move point and
then display a single legend entry with a legend command. Continue until all
legend entries are displayed.

This is demonstrated in the following example, with each separate legend
entry PostScript file inserted into a table. The output is shown in Figure 46.
This approach is also useful for inserting legend entries into an HTML table.

begin monument

Display monument symbol at current point.

#

key "point", "Monument"

color "black"

move 0, 0; draw -1, -2, 1, -2, 0, 0; draw 0.5, 0.5, 0, 1, -0.5, 0.5, 0, 0

fill

end

begin ruins

Display archaelogical ruins symbol at current point.

#

key "point", "Archaelogical Ruins"

color "black"; circle 0, 1.5, 0.5; circle -1, 0, 0.5; circle 1, 0, 0.5

fill

end

begin church name, ruined

Display a church or church ruins symbol at current point on path.

Provide legend entry for each type of church.

#

key "point", "Church", "", 0

key "point", "Church Ruins", "", 1

Draw name of church.

59

#

clearpath

font "Helvetica", 2.5; justify "middle"

move 2, 0

label name

Turn church symbol on its side if flagged as ruined.

#

if ruined == 1 then rotate -30; endif

color "black"; linestyle 0.1

box -1, 0, 1, -2

fill

clearpath; move 0, 0; draw 0, 2; move -1, 1; draw 1, 1

stroke

end

newpage "eps", "tutoriallegend2.eps", 50, 30, "background=grey90"

clearpath; move 5, 5

monument

clearpath; move 7, 22

monument

clearpath; move 24, 19

ruins

clearpath; move 32, 16

church "Ospringe", 1

Draw each legend entry in a separate PostScript file, giving

a single move point in each file to draw the next legend entry.

#

let counter = 0

while Mapyrus.key.count > 0

do

let counter = counter + 1

let filename = "tutoriallegend2legend" . counter . ".eps"

newpage "eps", filename, 50, 8

clearpath; move 1, 1

color "black"; justify "middle"; font "Helvetica", 2.5

legend 6

done

To show the number of times a legend entry has been used on a map, include
the special string (#) in legend entry descriptions. This string is replaced in
the legend by the number of times the legend entry was encountered whilst
executing commands. This feature is demonstrated in the following example,
with output shown in Figure 47.

begin dormantcell

key "box", "Dormant Cell (#) occurrences"

color "skyblue"; fill; color "black"; stroke

end

begin activecell

60

Ospringe

Individual Legend PostScript Files

Archaelogical Ruins

Church

Church Ruins

Monument

Figure 46: Displaying Legend Entries Individually

key "box", "Active Cell (#) occurrences"

color "red"; fill; color "black"; stroke

end

newpage "eps", "tutoriallegend3.eps", 45, 30

clearpath; hexagon 10, 18, 8

dormantcell

clearpath; hexagon 22, 10, 8

activecell

clearpath; hexagon 34, 18, 8

activecell

Make separate PostScript file containing legend.

#

newpage "eps", "tutoriallegend3legend.eps", 45, 40

clearpath; color "black"; move 5, 5, 5, 12, 5, 19, 5, 26, 5, 33

justify "middle"; font "Helvetica", 2.5

legend 4

4.20 Using Attributes To Control Display

Use attributes of geographic data to control color, size, shape, labelling, high-
lighting and alignment of symbols, lines and polygons. Use if-then-endif
statements to display different classes of data differently. For example, dis-
play private, local, and major roads with different types of lines. This is known

61

Active Cell (2) occurrences

Dormant Cell (1) occurrences

Figure 47: Displaying Frequency Count Of Legend Entries

as Dynamic Charting.
To display data with a known range of attribute values in different colors

based on the attribute value, define colors for minimum and maximum values
and use interpolation to determine the color for each point, line or polygon. This
is demonstrated in the following example by passing a temperature attribute
value for each point that is displayed. The output is shown in Figure 48. A
legend is also created to show how the coloring works.

begin temperature t

Define legend entries for various temperatures.

#

key "point", "temperature 20\260C", 20

key "point", "temperature 25\260C", 25

key "point", "temperature 30\260C", 30

key "point", "temperature 35\260C", 35

Temperature is a value in range 20-35. Convert it to

a color in the range green-yellow-red.

#

color interpolate("20 green 25 yellow 35 red", t)

box -2, -2, 2, 2

fill

end

Display map of Australia. Then read temperature data from a file

and display January temperatures for some cities, with different

colors representing different temperatures.

#

newpage "eps", "tutorialattribute1.eps", 60, 40

dataset "shapefile", "coastline.shp", "dbffields="

worlds -2800000, 4800000, 2150000, 9190000

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

stroke

62

done

dataset "textfile", "aust_cities.dat", ""

while Mapyrus.fetch.more

do

fetch

let cityname = $1

fetch

let x = $1, y = $2

clearpath

move x, y

fetch

let januaryTemperature = $1

temperature januaryTemperature

fetch

done

Draw legend in separate PostScript file.

#

newpage "eps", "tutorialattribute1legend.eps", 40, 50, \

"isolatinfonts=Helvetica"

color "black"

move 5, 5, 5, 10, 5, 15, 5, 20

font "Helvetica", 2.5

legend 4

temperature 20°C

temperature 25°C

temperature 30°C

temperature 35°C

Figure 48: Using Attributes

Another possibility is varying the size of a symbol depending on an attribute
value. The next example demonstrates this, using the population value for each
city to control the height of a cylinder drawn at each point. The output is shown
in Figure 49.

begin populationCylinder name, pop

Define legend entries for various populations.

#

key "point", " 200000 people", "", 200000

key "point", "1000000 people", "", 1000000

63

key "point", "2000000 people", "", 2000000

key "point", "5000000 people", "", 5000000

Population is a value in range 200000-5million. Convert

it to a height for the cylinder in the range 2mm-8mm.

#

let height = interpolate("200000 2 5000000 8", pop)

cylinder 0, 0, 4, height

color "lightorange"

fill

color "black"

stroke

clearpath

color "maroon"

move 0, -6

font "Helvetica-Bold", 3

justify "center"

label name

end

Display map of Australia. Then display populations of

Australian cities, with different size cylinders representing

different population levels.

#

newpage "eps", "tutorialattribute2.eps", 80, 70

dataset "shapefile", "coastline.shp", "dbffields="

worlds -2800000, 4800000, 2300000, 9190000

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

color "lightgray"

fill

color "gray"

stroke

done

dataset "textfile", "aust_cities.dat", ""

while Mapyrus.fetch.more

do

fetch

let city = $1, population = $2

fetch

let x = $1, y = $2

clearpath

move x, y

fetch # skip lines containing temperature data.

64

fetch

populationCylinder city, population

done

Draw legend in separate PostScript file.

#

newpage "eps", "tutorialattribute2legend.eps", 40, 50

font "Helvetica-Bold", 3

color "black"

move 5, 5, 5, 15, 5, 25, 5, 35

legend 4

SYDNEY

BRISBANE

PERTH

DARWIN

ADELAIDE

HOBART

 200000 people

1000000 people

2000000 people

5000000 people

Figure 49: Using More Attributes

Further examples are varying line width depending on traffic between two
points, varying labelling depending on the importance of data, or varying the
symbols plotted inside polygons depending on soil or rock type.

Extend this technique to display two attribute values together to show re-
lationships between the attributes (such as the correlation between fox popula-
tions and rabbit populations). Alternatively, display the same attribute mea-
sured at different times to show trends in the attribute data.

To display values of several attributes at point locations, draw a piechart or
histogram (see page 67) at each point.

When reading from a relational database table, SQL aggregate functions are
available for calculating statistics from the data.

The following SQL statement demonstrates calculating how many standard
deviations each reading is from the average. Use the result of this calculation
to control the display of the data, showing readings that are far from average
differently to readings that are close to average.

select X, Y, (Reading - (select AVG(Reading) from Pollution)) /

(select STDDEV(Reading) from Pollution) as R from Pollution

65

4.21 Displaying A Scalebar

Another cartographic rule is that a map display must include a scalebar. The fol-
lowing example creates two PostScript files using the internal variable Mapyrus.worlds.scale
to add a scale bar to the lower-left corner of each map display.

The included file scalebar.mapyrus (available in the userdoc subdirectory)
defines a procedure named scalebar. This procedure performs the task of dis-
playing the scalebar. Include this file and call the scalebar procedure whenever
a scalebar is required for a map display.

Output from the example is shown in Figure 50.
An alternative approach for displaying scalebars is to save the scale value in

a variable, use the newpage command to create a new output file and display
the scalebar in a separate file from the map.

Include file containing procedure to display scalebar.

#

include scalebar.mapyrus

newpage "eps", "tutorialscalebar1.eps", 60, 60, "background=pastelblue"

Display entire Australian continent.

#

dataset "shapefile", "coastline.shp", ""

worlds -3000000, 5500000, 2600000, 8500000

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

color '#669900'

fill

color '#333333'

linestyle 0.1

stroke

done

Add a scalebar.

#

clearpath

scalebar Mapyrus.worlds.scale, "m", 0, 0

Begin a new page.

#

newpage "eps", "tutorialscalebar2.eps", 60, 60, "background=pastelblue"

Display only northern part of Northern Territory.

#

dataset "shapefile", "coastline.shp", ""

worlds -1300000, 7700000, 300000, 8900000

while Mapyrus.fetch.more

66

do

fetch

clearpath

addpath GEOMETRY

color '#669900'

fill

color '#333333'

linestyle 0.1

stroke

done

Add a scalebar to this map display too.

#

clearpath

scalebar Mapyrus.worlds.scale, "m", 0, 0

0 1 2 3
thousands of kilometers

0 200 400 600 800 1000
kilometers

Figure 50: Displaying A Scalebar

4.22 Displaying Piecharts And Histograms

Piecharts and histograms are used to represent relative values of several at-
tributes at different locations. For example, production levels or voting pat-
terns. The following example demonstrate this using fixed data values. In a
real application this information is read from a database or GIS dataset.

The included files piechart.mapyrus and histogram.mapyrus (available in
the userdoc subdirectory) define procedures named piechart and histogram.
These procedures perform the task of displaying piecharts and histograms. In-
clude one of these files and call the piechart or histogram procedure whenever
piecharts or histograms are to be displayed.

The output of this example is shown in Figures 51 and 52.

Include file containing procedure to display piechart.

#

67

include piechart.mapyrus

newpage "eps", "tutorialpiechart1.eps", 90, 40

Set fixed colors and labels for all pies.

#

let colors = ["green", "orange", "yellow", "#606c30"]

let labels = ["Apples", "Oranges", "Bananas", "Olives"]

Set production levels for first site. Then draw piechart.

#

let production = [7000, 2000, 1500, 500]

clearpath

move 22, 15

piechart 4, production, labels, colors

Set production levels for second site. Then draw piechart.

Pass dummy variable for labels array to demonstrate omitting labels.

#

let production = [5000, 3000, 2500, 500]

clearpath

move 42, 28

piechart 4, production, dummy, colors

Set production levels for third site. Then draw piechart.

#

let production = [8000, 2000, 4500, 3500]

clearpath

move 70, 14

piechart 4, production, labels, colors

Include file containing procedure to diplay histogram.

#

include histogram.mapyrus

newpage "eps", "tutorialhistogram1.eps", 80, 20

Draw small histogram with four values without any labels.

#

move 20, 7

let maxProduction = 10000

histogram colors, dummy, production, maxProduction, 6

Set different production levels and draw another small histogram.

#

let production = [6000, 4000, 3500, 4500]

clearpath

move 40, 14

histogram colors, dummy, production, maxProduction, 6

68

Draw a larger histogram with a label for each bar.

#

clearpath

move 60, 5

histogram colors, labels, production, maxProduction, 12

Apples
Oranges

Bananas
Olives

Apples

Oranges

Bananas

Olives

Figure 51: Displaying Piecharts

Apples
Oranges
Bananas
Olives

Figure 52: Displaying Histograms

4.23 Random Effects

Random effects are generated using the random function and help give a map
a less mechanical appearance. Random effects are also useful for giving data
that is not precise a blurred, inaccurate appearance. The following example
demonstrates setting color randomly. The output is shown in Figure 53.

begin flower

Draw flower with 12 randomly colored petals.

#

repeat 12

do

clearpath

ellipse 5, 0, 3, 1.2

let r = random(3)

if r < 1

then

color "pastelblue"

elif r < 2

69

then

color "pastelpink"

else

color "pastelgreen"

endif

fill

color "black"

linestyle 0.1

stroke

rotate 30

done

end

newpage "eps", "tutorialrand1.eps", 40, 40

move 9, 8

move 24, 10

move 8, 31

move 25, 28

flower

Figure 53: Random Color

The next example demonstrates setting rotation randomly, with output
shown in Figure 54.

begin cobblestone

Draw a square area of cobblestones, rotated

a random multiple of 90 degrees

#

let r = round(random(4))

rotate r * 90

color "black"

linestyle 0.2

move -1.8, -1.8

draw -1.6, -0.2, -0.3, -0.3, -0.4, -1.5, -1.8, -1.8

move 0.3, -1.7

draw 0.2, 1.8, 1.8, 1.7, 1.6, -1.8, 0.3, -1.7

70

move -1.7, -0.3

draw -1.8, 1.8, -0.2, 1.6, -0.3, 0.2, -1.7, -0.3

stroke

end

newpage "eps", "tutorialrand2.eps", 40, 40

clearpath

move 4, 8

draw 36, 8, 36, 32, 12, 32, 12, 24, 4, 24

samplepath 4, 0

cobblestone

Figure 54: Random Rotation

The next example demonstrates setting position randomly for polygon fill,
with output shown in Figure 55.

begin placeDot

Place dot in random position.

#

circle random(2), random(2), 1

color "orange"

fill

end

begin fillDots densityPercent

clip "inside"

stripepath 3 / (densityPercent / 100), 0

samplepath 3 / (densityPercent / 100), 0

placeDot

end

begin dotDensityFill densityPercent

Draw dots inside polygon.

#

fillDots densityPercent

Draw polygon outline

#

color "black"

linestyle 0.1

stroke

71

end

newpage "eps", "tutorialrand3.eps", 60, 40

clearpath

box 3, 3, 20, 38

dotDensityFill 25

clearpath

box 23, 3, 40, 38

dotDensityFill 50

clearpath

box 43, 3, 59, 38

dotDensityFill 100

Figure 55: Random Position

4.24 Using Transparency

To set a partially transparent color in Mapyrus, give a transparency value (also
known as an alpha value) for the color. The background will be partly visible
behind shapes and labels drawn with transparent colors.

The following example demonstrates using transparent colors, with output
shown in Figure 56.

Transparent colors cannot be set in PostScript files using eps or ps format
output. Transparent colors are only available in a Encapsulated PostScript file
containing an image created using epsimage format output.

newpage "epsimage", "tutorialtrans1.eps", 60, 50, "background=white"

color "lightgray"

clearpath

box 0, 25, 60, 50

fill

clearpath

color "red", 0.5 # half transparent

box 5, 15, 45, 40

72

fill

clearpath

color "green", 0.8 # mostly opaque (solid)

box 15, 5, 35, 35

fill

clearpath

color "blue", 0.2 # mostly transparent

box 25, 7, 50, 45

fill

clearpath

font 'Times-Roman-Bold', 9

color "black", 0.1 # nearly transparent

move 0, 22

label "Transparent"

Figure 56: Transparent Colors

Transparency is also used to produce fading effects. This technique is demon-
strated in the following example, with lines fading from an opaque color to
transparent. The output of this example is shown in Figure 57.

newpage "epsimage", "tutorialtrans2.eps", 80, 40, "background=white"

color "lightgray"

chessboard 0, 0, 80, 40, 5

fill

begin fadingDot startingColor

color startingColor, pow(fadingCounter / fadingLength, 2)

let fadingCounter = fadingCounter - 1

circle 0, 0, 1

fill

end

73

Draw closely packed circles along path that fade

from starting color to transparent at end of line.

#

begin fadingLine startingColor

let fadingLength = Mapyrus.path.length

let fadingCounter = fadingLength

samplepath 1, 0

fadingDot startingColor

end

clearpath

move 5, 30

draw 75, 35

fadingLine "blue"

clearpath

move 10, 18

draw 75, 8

fadingLine "red"

Figure 57: Fading Lines

When creating PDF output, the method of blending transparent colors with
the background is modified using the blend command.

4.25 Color For Printing

RGB colors define exactly the color for display on the screen. A printer can only
approximate these colors. To define exact colors for printing, use CMYK colors
in the COLOR command when creating PostScript, Encapsulated PostScript or
PDF output.

Color images that are read and displayed using the icon and geoimage

commands are included in PostScript, Encapsulated PostScript and PDF output
as RGB images.

The following example demonstrates using CMYK colors, with output shown
in Figure 58.

newpage "eps", "tutorialcolor1.eps", 40, 40, "background=cmyk(0,0,0,0)"

74

color "cmyk", 1, 0, 0, 0

box 2, 2, 10, 38

fill

clearpath

color "cmyk", 0, 1, 0, 0

box 12, 2, 20, 38

fill

clearpath

color "cmyk", 0, 0, 1, 0

box 22, 2, 30, 38

fill

clearpath

Another way of defining a CMYK color

color "cmyk(0,0,0,1)"

box 32, 2, 40, 38

fill

Figure 58: CMYK Color

4.26 Shadow Effects

To highlight polygons with a shadow, draw the outline of the polygon, use a clip
"outside" command to prevent the interior of the polygon being drawn, then
repeatedly use the shiftpath command to move the polygon a small distance
from its original position, drawing it each time. This is demonstrated in the
following example, with output shown in Figure 59. Change the sign of the shift
values in the shiftpath command to draw the highlight on a different side of
the polygon.

begin shadowed2

Protect polygon interiors and draw shadow offset from polygon.

#

color '#cccc00'

linestyle 0.1

clip "outside"

75

repeat 7

do

shiftpath 0.1, -0.1

stroke

done

end

begin shadowed

Display a polygon with shadow to the bottom-left.

#

shadowed2

linestyle 0.1

color 'black'

stroke

end

Fetch all polygons from coastline.shp into current path.

#

dataset "shapefile", "coastline.shp", "dbffields="

newpage "eps", "tutorialshadow1.eps", 60, 60

worlds -2800000, 4800000, 2150000, 9190000

clearpath

while Mapyrus.fetch.more

do

fetch

addpath GEOMETRY

done

Draw all polygons with shadows together so that shadow from one

polygon does not interfere with the interior of another polygon.

#

shadowed

Figure 59: Shadow Effects

76

4.27 Displaying Tables

Attribute information read from a dataset is often best displayed in a table.
Tables are displayed in Mapyrus by creating arrays containing the row and

column values and then using the table command.
The following example shows the positions of several vehicles, giving infor-

mation about each vehicle as a table at the vehicle position. The output of this
example is shown in Figure 60.

begin vehiclebox reg, cargo, driver, time

local a, b

let a = [reg, cargo]

let b = [driver, time]

Draw vehicle info as two column table with arrow pointing left

#

font 'Helvetica', 3

color "Black"

clearpath

move 2, 4

table "background=orange", a, b

draw 2, -4, 0, 0, 2, 4

fill

end

newpage "eps", "tutorialtable1.eps", 95, 30

move 22, 20

vehiclebox "MAC-259", "FROZEN", "Smith", "Bris 9:20"

clearpath

move 60, 14

vehiclebox "MTT-257", "FRESH", "Jones", "Syd 2:10"

MAC-259

FROZEN

Smith

Bris 9:20 MTT-257

FRESH

Jones

Syd 2:10

Figure 60: Displaying Tables In A Map

Other uses of tables are to show a summary of the data displayed on the
page and to show a title block for a page.

The following example demonstrates both types of tables. The output of
this example is shown in Figure 61.

begin hotelref counter

box -1, -1, 1, 1

77

stroke

clearpath

move 1.5, 0

label counter

end

newpage "eps", "tutorialtable2.eps", 100, 50

color "black"

font 'Helvetica-Bold', 3

Display the ESRI Shape file hotel.shp on left side of page.

#

dataset "shapefile", "hotel.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y, 0, 0, 60, 50

let n = 1

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

hotelref n

Save attribute information for each hotel in arrays for display in a table.

#

let ref[n] = n

let name[n] = HOTELNAME

let rating[n] = "*" x STARRATING

let n = n + 1

done

Display reference table for map and title block on right side of page.

#

worlds 0, 0, 100, 50

clearpath

move 60, 45

table "background=grey90,grey90,grey90,white,white,white", ref, name, rating

clearpath

move 60, 20

table "background=grey90", split("Title Block,Author,Date", ",")

Give several background colors in the table command to make rows or
columns in a table easier to read. For example, in a table with 2 columns, using
background colors white,white,yellow,yellow results in rows having white
and yellow backgrounds alternately.

4.28 Wordwrapped Labels

To split a long sentence into several lines for display as a label, use the wordwrap
function. This function breaks lines at word boundaries like a word-processor

78

1
2 3

4

1

2

3

4

REGENCY HOTEL

METRO INN

INTERCITY HOTEL

COMFORT INN

**

**

Title Block

Author

Date

Figure 61: Displaying Map And Tables Separately

and is useful for displaying speech bubbles, or tooltip type labels on the page.
The following example shows sentences being word-wrapped and displayed in-
side a box using the table command. The output of this example is shown in
Figure 62.

begin caption message, width

local t

Word wrap message then display it as a table with only one entry.

#

font 'Helvetica', 3

let t[1] = wordwrap(message, width)

color "Black"

linestyle 0.1

clearpath

move 0, 0

table "background=LightYellow", t

end

newpage "eps", "tutorialwordwrap1.eps", 95, 50

move 20, 28

caption "SYDNEY: A cloudy morning followed by a partly cloudy afternoon.

Mostly fine apart from the chance of a shower early. Light to moderate

W/NW winds, turning moderate SW during the day.", 35

clearpath

move 30, 44

caption "BRISBANE: Rain easing to showers. Mild to warm with moderate

to fresh gusty S/SW winds.", 35

4.29 Formatting In Labels

It is also possible to manually format text as a sequence of label commands,
using the stringwidth function to determine when to start a new line.

79

SYDNEY: A cloudy
morning followed by a
partly cloudy afternoon.
Mostly fine apart from the
chance of a shower early.
Light to moderate W/NW
winds, turning moderate
SW during the day.

BRISBANE: Rain easing
to showers. Mild to warm
with moderate to fresh
gusty S/SW winds.

Figure 62: Wordwrapped Labels

This is demonstrated in the following example, with markup tokens in the
text being parsed to change the font or colour between words. Tab and newline
characters also used to control the positioning of text on the page. The output
of this example is shown in Figure 63.

newpage "eps", "tutorialformatting1.eps", 110, 50, \

"isolatinfonts=Helvetica,Helvetica-Bold,Helvetica-Oblique"

begin markup message, xStart, yStart, xEnd, xWrapStart

local x, y, fh, a, t, mod, sw

let x = xStart, y = yStart

let fh = 6

font "Helvetica", fh

justify "left, bottom"

let a = split(message, "(|||<i>|</i>|\n|\t)", \

"includedelimiters=true")

for i in a

do

let t = a[i]

if t eq "\n" then

let y = y - fh, x = xStart

elif t eq "\t" then

move right to next tab position

let mod = x % 10

let x = x + (10 - mod)

elif t eq "" then

font "Helvetica-Bold", fh

elif t eq "<i>" then

font "Helvetica-Oblique", fh

elif t eq "" or t eq "</i>" then

font "Helvetica", fh

elif t eq "" or t eq " " then

skip whitespace

else

if x > xStart then

80

let sw = stringwidth(" " . t)

if (x + sw > xEnd) then

no more space on this line, wrap to new line

let y = y - fh, x = xWrapStart

else

let t = " " . t

endif

endif

clearpath ; move x, y

label t

let x = x + stringwidth(t)

endif

done

end

let str = "ospe'dale\t<i>sm</i>hospital;"

let str = str . "dov'\u00e8 l'~pi\u00f9 vicino?"

let str = str . "where's the nearest hospital?\n"

let str = str . "ospi'tale\t<i>ag</i>hospitable\n"

let str = str . "ospi'tare\t<i>vt</i>to give "

let str = str . "hospitality to; <i>albergo</i>"

let str = str . "to accommodate\n"

markup str, 10, 40, 100, 20

ospe’dale sm hospital; dov’è
l’~più vicino? where’s the
nearest hospital?

ospi’tale ag hospitable
ospi’tare vt to give hospitality

to; albergo to accommodate

Figure 63: Label Formatting

4.30 Avoiding Overlapping Labels

Mapyrus stores a list of areas on the page that have been marked as protected
by the protect command. To avoid overlapping labels, check that the area
that will be covered by a label is not protected before displaying the label using
the stringwidth and protected functions. After displaying a label use the
protect command to mark the area covered by the label as protected.

This is demonstrated in the following example, with labels drawn to the

81

right or left of a point, to avoid overlapping other labels. Output is shown in
Figure 64.

begin populatedPlace name

box -0.5, -0.5, 0.5, 0.5

fill

clearpath

Calculate size of place name label, then draw it to

the right or the left of the place, wherever there is

space that has not been used before.

#

let h = 4

font "Helvetica", h

let w = stringwidth(name)

color "pastelpink"

if not protected(1, -1, w + 1, h)

then

Draw label inside a box to right of point.

Then mark labelled area as protected.

#

box 1, -1, w + 1, h

fill

clearpath

move 1, 0

justify "left"

color "black"

label name

protect 1, -1, w + 1, h

elif not protected(-1, -1, -(w + 1), h)

then

Draw label inside a box to left of point.

Then mark labelled area as protected.

#

box -1, -1, -(w + 1), h

fill

clearpath

move -1, 0

justify "right"

color "black"

label name

protect -1, -1, -(w + 1), h

endif

end

Draw coastline.

#

newpage "eps", "tutorialprotect1.eps", 75, 50

dataset "shapefile", "coastline.shp", ""

worlds 600000, 5100000, 1500000, 6100000

82

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

stroke

done

Read positions and names of towns and cities from file.

#

dataset "textfile", "locations.txt", "delimiter=,"

while Mapyrus.fetch.more

do

fetch

clearpath

move $1, $2

populatedPlace $3

done

MELBOURNE

HOBART

Geelong

Ballarat

Launceston
Cradle Mountain

Figure 64: Label Positioning

For best results, display the most important labels first to maximise the
chances of finding a position for a label that does not overlap previous labels.
For example, label large towns before villages.

This method can be extended to draw labels left, right, above, below or
offset from their true position, wherever they do not overlap other labels.

Areas of the page containing important symbols or icons can be protected
too. However, in many cases it is simpler to display most important data last
to ensure it is not overwritten.

Use the unprotect command to clear protected areas.
To avoid labels overlapping other important data on the page, set the area

to be protected in the path and use the protect command with no arguments
to protect that area.

This is demonstrated in the following example, with labels drawn in random
positions but avoiding overlaps with other data already displayed on the page.
Output is shown in Figure 65.

83

newpage "eps", "tutorialprotect2.eps", 75, 50

Draw a shape then mark that area as protected.

#

move 10, 10

draw 60, 40, 55, 45, 5, 15, 10, 10

stroke

protect

font "Helvetica", 4

color "blue"

let w = stringwidth("ABCD")

let counter = 0

Draw 25 randomly positioned labels, avoiding overlaps with anything

we have already drawn.

#

while counter < 25

do

let x = random(75)

let y = random(50)

if (not protected(x, y, x + w, y + 4))

then

clearpath

move x, y

label "ABCD"

protect x, y, x + w, y + 4

let counter = counter + 1

endif

done

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD ABCD

ABCD

ABCD ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

Figure 65: More Label Positioning

84

4.31 Displaying Image Icons

Display color image icons and clip-art using the icon command. Icons are scaled
and rotated to any size and rotation angle. Displaying icons is demonstrated in
the following example with output shown in Figure 66.

Draw icons with different sizes and rotations.

#

newpage "eps", "tutorialicon1.eps", 40, 40

move 10, 15

icon "footballpitch.gif"

clearpath

move 25, 15

icon "footballpitch.gif", 15

clearpath

rotate 30

move 30, 20

icon "footballpitch.gif", 12

Figure 66: Icon Display

Combine the icon command with stripepath and samplepath commands
to repeat the icon in a tile pattern inside a polygon. This is demonstrated in
the following example with output shown in Figure 67.

begin singleIcon

move 0, 0

color "firebrick"

icon "10000000

11111110

10000010

10111010

10100010

10101110

10100000

10111111", 6

end

Fill polygon with tiled icon image pattern.

#

85

begin iconPattern

clip "inside"

stripepath 6, 0

samplepath 6, 0

singleIcon

end

Draw polygon filled with icons.

#

newpage "eps", "tutorialicon2.eps", 50, 50

clearpath

move 5, 5

draw 12, 29, 24, 43, 44, 37, 46, 29, 36, 26, 46, 25, 49, 7, 5, 5

iconPattern

linestyle 1.5, "round", "round"

stroke

Figure 67: Icon Fill Pattern

Another use for icons is to achieve a spray paint effect, with scattered dots.
This effect is demonstrated in the following example with output shown in Figure
68.

begin spray

move 0, 0

rotate random(360)

color "limegreen"

icon "00000000

01000100

00010010

00101000

01000010

00010100

01000001

00101010", 3

end

86

Fill polygon with spray paint pattern.

#

begin sprayPattern

stroke

clip "inside"

stripepath 3, 0

samplepath 3, 0

spray

end

Read map and plot it.

#

dataset "shapefile", "coastline.shp", "dbffields="

newpage "eps", "tutorialicon3.eps", 60, 60

worlds -2800000, 4800000, 2150000, 9190000

clearpath

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

sprayPattern

done

Figure 68: Spray Paint Pattern

4.32 Including Encapsulated PostScript Files

When creating PostScript or Encapsulated PostScript output it is possible to
display the contents of another Encapsulated PostScript file on the page one or
more times.

Both Encapsulated PostScript files Files generated by Mapyrus and other
software may be included.

87

Using an Encapsulated PostScript file named flag.eps in a fill pattern is
demonstrated in the following example with output shown in Figure 69.

Fill polygon with Aboriginal flag pattern.

#

begin flagPattern

clip "inside"

stripepath 5, 0

samplepath 6, 0

eps "flag.eps", 5

end

Read map and plot it.

#

dataset "shapefile", "coastline.shp", "dbffields="

newpage "eps", "tutorialeps1.eps", 50, 50

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

clearpath

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

flagPattern

done

Figure 69: Displaying An Encapsulated PostScript File

4.33 Creating Groups in PDF Output Files

When creating PDF output it is possible to define any countinuous set of output
as a named group.

The output included in each group is displayed on the page as normal. How-
ever, PDF viewers such as Adobe Acrobat Reader have menu options to turn
individual groups on and off, producing a layering effect.

88

The pdfgroup command is used to define the name, beginning and end of
each group, as demonstrated in the following example

newpage "pdf", "tutorialpdfgroup.pdf", 80, 80

dataset "shapefile", "coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

Define first group

pdfgroup "begin", "Background Image"

geoimage "australia.png"

pdfgroup "end"

Define second group

color "yellow"

linestyle 1, "round", "round"

pdfgroup "begin", "Coastline"

while Mapyrus.fetch.more

do

clearpath

fetch

addpath GEOMETRY

stroke

done

pdfgroup "end"

4.34 Mapyrus and JTS Topology Suite Functions

Advanced geometric functions in Mapyrus (see Figure 3 on page 114) are pro-
vided by the JTS Topology Suite, available from (http://www.tsusiatsoftware.net/jts/main.html).

If any of these functions are used then the JTS Topology Suite JAR file must
be included in the classpath when running Mapyrus. The following command
demonstrates this:

java -classpath install-dir /mapyrus.jar:jts-dir /jts-1.13.jar \
org.mapyrus.Mapyrus tutorialjts1.mapyrus

The following example demonstrates using the buffer function to create a
hatched buffer around a line with the output shown in Figure 70.

newpage "eps", "tutorialjts1.eps", 60, 60

worlds 5000, 1000, 6000, 2000

Demonstrate drawing buffer around a line. For simplicity, use

only a single line. In reality, geometries would be read

from a dataset.

#

let wkt = 'LINESTRING (5200 1200, 5337 1664, 5798 1643, 5347 1120)'

addpath wkt

linestyle 3

89

color "orange"

stroke

clearpath

addpath buffer(wkt, 100, "round")

linestyle 0.1

color "red"

stroke

Fill buffered area with a hatch pattern.

#

clip "in"

stripepath 3, -45

stroke

Figure 70: Buffer Function

The contains function is used to determine whether one geometry is con-
tained inside another. This is useful for displaying sample points differently,
depending on which polygon they are inside. A simple use of the contains

function is demonstrated in the following example with the output shown in
Figure 70.

begin locpt name

box -1, -1, 1, 1

fill

clearpath

move 2, 0

font "Helvetica", 3.5

label name

end

let polygonColorList = split("red blue green orange")

Draw all polygons in different colors and also save them into a list.

90

#

newpage "eps", "tutorialjts2.eps", 85, 50

dataset "shapefile", "coastline.shp", ""

worlds 600000, 5100000, 1500000, 6100000

while Mapyrus.fetch.more

do

fetch

let polygonList[Mapyrus.fetch.count] = GEOMETRY

clearpath

addpath GEOMETRY

color "lightgray"

fill

color polygonColorList[Mapyrus.fetch.count]

stroke

done

let nPolygons = length(polygonList)

Read list of points, finding which polygon contains each point,

and then drawing the point in a different colour depending on

which polygon contains the point.

#

dataset "textfile", "locations.txt", "delimiter=,"

while Mapyrus.fetch.more

do

fetch

let found = 0, i = 1

while found == 0 and i <= nPolygons

do

if contains(polygonList[i], $1, $2)

then

This polygon contains point, draw point in color of polygon.

#

color polygonColorList[i]

clearpath

move $1, $2

locpt $3

let found = 1

endif

let i = i + 1

done

done

Combine the buffer and contains functions to display data differently
depending on whether it falls within a certain distance of another geometry.

Use the overlaps function to test whether two polygons or two lines overlap.
Use the difference, intersection and union functions to perform oper-

ations on geometries. Use of the difference function is demonstrated in the
following example to find the parts of a polygon that are not inside a second
polygon. The output of this example is shown in Figure 72.

newpage "eps", "tutorialjts3.eps", 60, 60

91

MELBOURNE

HOBART

Geelong

Ballarat

Launceston
Cradle Mountain

Figure 71: Contains Function

worlds 5000, 1000, 6000, 2000

let wkt1 = 'POLYGON ((5200 1200, 5337 1664, 5798 1643, 5347 1120, 5200 1200))'

let wkt2 = 'POLYGON ((5100 1300, 5100 1900, 5500 1800, 5700 1350, 5100 1300))'

Draw both polygons in different colors.

#

linestyle 3

clearpath

addpath wkt1

color "purple"

stroke

clearpath

addpath wkt2

color "forestgreen"

stroke

Draw area of first polygon not covered by second polygon.

#

let wkt3 = difference(wkt1, wkt2)

clearpath

addpath wkt3

linestyle 1

color "yellow"

stroke

4.35 Mapyrus and Java PROJ.4 Library

The reproject function reprojects coordinates using the Java PROJ.4 library
available from http://www.jhlabs.com/java/maps/proj.

If this function is used then the Java PROJ.4 JAR file must be included in
the classpath when running Mapyrus. The following command demonstrates
this:

92

Figure 72: Difference Function

java -classpath install-dir /mapyrus.jar:dir /javaproj-1.0.9.jar \
org.mapyrus.Mapyrus tutorialproj1.mapyrus

The following example demonstrates displaying a map of the world, with
the geometry of each country reprojected from latitude, longitude values to
Mollweide projection using the reproject function and projection names from
PROJ.4 control files. The output is shown in Figure 73.

newpage "eps", "tutorialproj1.eps", 110, 60, "background=skyblue"

worlds -1.79e7, -8997266, 1.79e7, 8997266

dataset "internal", "countries", "xmin=-180 ymin=-90 xmax=180 ymax=90"

while Mapyrus.fetch.more

do

fetch

clearpath

addpath reproject("epsg:4326", "esri:54009", GEOMETRY)

color "khaki"

fill

color "black"

linestyle 0.1, "round", "round"

stroke

done

4.36 Creating Landscape Output on Portrait Pages

Many PostScript printers accept only portrait orientation pages. To print a
landscape orientation page, give the turnpage=true option to the newpage com-
mand. This option turns a landscape page 90 degrees to fit on a portrait page
and is demonstrated in the following example, with output shown in Figure 74.

Create landscape page 50mm wide and 30mm high.

93

Figure 73: Mollweide Projection

newpage "eps", "tutorialturnpage1.eps", 50, 30, "turnpage=true"

Draw page border.

linestyle 4

box 0, 0, Mapyrus.page.width, Mapyrus.page.height

stroke

Draw horizontal label on page.

clearpath

move 5, 10

font "Palatino", 8

label "Horizontal"

H
o
r
iz
o
n
ta
l

Figure 74: Rotated Landscape Page

4.37 Page Layout With Mapyrus

Place a map, a legend, a scalebar, a title, a logo and other information on a
page to create a complete page layout.

94

Calculate a page position in millimeters at which to display each item. A
map is displayed in a given region of the page using the worlds command with
both world coordinates and a page position.

The following example demonstrates placing each item on an A6 size page
with output shown in Figure 75 on page 109.

include scalebar.mapyrus

Settings for page layout. To use this a template, read these settings

from files using commands like 'let title=spool("mytitle.txt")' instead.

#

let title = "My Title"

let map = "coastline.shp"

newpage "eps", "tutoriallayout1.eps", "A6", "background=lightgrey"

Draw the title and logo.

#

move 10, 125

font "Palatino-Roman", 24

color "black"

label title

clearpath

move 80, 10

icon "mapyrus.png"

begin land

key "box", "Land"

color "khaki"

fill

color "black"

stroke

end

begin sea

key "box", "Sea"

color "seablue"

fill

end

begin drawMap

Set world coordinates in center of page, then draw map.

#

clearpath

box 4, 20, 78, 115

stroke

dataset "shapefile", map, ""

worlds -1300000, 7000000, 300000, 8900000, 10, 25, 75, 110

clearpath

95

box -1300000, 7000000, 300000, 8900000

clip "inside"

sea

while Mapyrus.fetch.more

do

fetch

clearpath

addpath GEOMETRY

land

done

let mapScale = Mapyrus.worlds.scale

end

Draw map in procedure so world coordinates and clip

rectangle are restored when procedure finishes.

#

clearpath

drawMap

Now draw the legend to the right of the map.

#

clearpath

move 85, 100, 85, 90

font "Palatino-Roman", 4

legend 5

Draw a table to the right of the map too.

#

font "Palatino-Roman", 3.5

clearpath

move 82, 80

table "", split("State ACT NSW NT QLD SA TAS VIC WA"), \

split("Rating B A- C AA B C+ D B")

Finally draw a scalebar below the map.

#

clearpath

scalebar mapScale, "m", 4, 5

Use a single page layout as a template for many map plots. Read the map
title, map filename, colors and other settings from files at the start of each plot.
An example of this is creating a daily weather map, with the map and title
changing each day.

An alternative page layout method is to create three Encapsulated PostScript
files for the map, legend and scalebar and to position these Encapsulated PostScript
files on a page using page layout software such as MicroSoft Word.

96

4.38 Creating Multiple Page Output

To create multi-page PDF files, create each page as a separate PostScript file
in Mapyrus. Then use the following GhostScript command to merge the pages
into a single PDF file:

gs -dNOPAUSE -sDEVICE=pdfwrite -sOutputFile=p.pdf p1.ps p2.ps -c quit

4.39 Using PostScript Fonts In PostScript Output

PostScript printers and the Ghostscript program understand a limited number
of fonts, normally only 35 basic fonts including AvantGarde, Bookman, Courier,
Helvetica, NewCenturySchlbk, Palatino, Symbol, Times-Roman, ZapfChancery,
ZapfDingbats and the bold and oblique (italic) variations of these fonts.

When a PostScript printer prints a file containing an unknown font, a sub-
stitute font is used.

To make a font known to the printer, include the ASCII definition of the
font in the PostScript file being printed.

An ASCII PostScript Type 1 font is defined in two files with suffixes .pfa
and .afm. PostScript font definition files are included in a PostScript file created
by Mapyrus using the extras pfafiles and afmfiles options to the newpage

command. Include filenames of PostScript font definition files for all fonts to be
used in the page that are not known by the printer.

If extended characters from any fonts are to be used then also include the
list of font names in the isolatinfonts option to the newpage command.

The first line of an ASCII PostScript Type 1 font definition file contains the
name of the font defined in the file.

To convert a True Type Font file to an ASCII PostScript Type 1 font use
the ttf2pt16 program. The following command converts the font in the file
BEANTOWN.TTF to a PostScript Type 1 font in files BEANTOWN.pfa and BEANTOWN.afm.

ttf2pt1 -e BEANTOWN.TTF BEANTOWN

4.40 Using PostScript Fonts In PDF Output

PDF format defines the following 14 standard fonts that are always available:
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic, Helvetica, Helvetica-
Bold, Helvetica-Oblique, Helvetica-BoldOblique, Courier, Courier-Bold, Courier-
Oblique, Courier-BoldOblique, Symbol, ZapfDingbats.

For other fonts, the definition of the font must be included in the PDF file
as a binary PostScript Type 1 font.

A binary PostScript Type 1 font is defined in two files with suffixes .pfb

and .afm. A binary PostScript Type 1 font is included in a PDF file created by
Mapyrus using the extras pfbfiles and afmfiles options to the newpage com-
mand. Include filenames of PostScript font definition files for all non-standard
fonts to be used in the PDF file.

If extended characters from any fonts are to be used then also include the list
of font names with ISO Latin 1 extended characters in the isolatinfonts op-
tion and font names with ISO Latin 2 extended characters in the isolatin2fonts
option to the newpage command.

6Available from http://ttf2pt1.sourceforge.net

97

Binary PostScript Type 1 font definition files are binary files. However,
many parts are plain text and the first plain text line in the file with .pfb suffix
contains the name of the font defined in the file.

To convert a True Type Font file to a binary PostScript Type 1 font use
the ttf2pt17 program. The following command converts the font in the file
BEANTOWN.TTF to a binary PostScript Type 1 font in files BEANTOWN.pfb and
BEANTOWN.afm.

ttf2pt1 -b BEANTOWN.TTF BEANTOWN

4.41 Using OpenType Fonts In PDF Output

Each PostScript Type 1 font contains different characters, depending on the
character encoding. However, each character is one byte, limiting the total
number of characters to 256. OpenType fonts avoid this restriction and enable
two byte Unicode characters to be used directly from Mapyrus.

An OpenType file is a binary file with suffix .otf and is included in a
PDF file created by Mapyrus using the extra otffiles option to the newpage

command.
To view the font name and available Unicode characters in an OpenType

font file and to convert other font formats to OpenType, use the fontforge8

program.

4.42 Using TrueType Fonts In Output to Image Formats

For output to image formats, TrueType format fonts are used.
MicroSoft Windows and Macintosh operating systems support TrueType

fonts directly and all installed TrueType fonts are available for use in the font
command. Additional TrueType fonts are installed using operating system com-
mands.

A TrueType font is defined in a binary file with suffix .ttf. The name
of a TrueType font normally does not match the filename exactly. MicroSoft
Windows Explorer and font display programs show the name of a font contained
in a TrueType font file.

Other operating systems do not support TrueType fonts. To use True-
Type fonts on other operating systems using the extras ttffiles option to
the newpage command. Include filenames of TrueType font definition files to
be used in the page.

Some TrueType fonts do not include a complete set of characters. For ex-
ample, letters with accents or the copyright symbol are often missing. To view
the available characters in a font on MicroSoft Windows use the Character map
program in the Program-Accessories menu. On UNIX operating systems use
the font editor pfaedit9.

4.43 Using Fonts In SVG Output

When creating Scalable Vector Graphics format output files, limit the use of
fonts to commonly used fonts such as Courier and Arial, or fonts that are

7Available from http://ttf2pt1.sourceforge.net
8Available from https://fontforge.github.io
9Available from http://pfaedit.sourceforge.net

98

known to be available in the software to be used to display the SVG output
files.

4.44 Running Mapyrus As An HTTP Server

Enter the following lines into a text file named tutorialhttpserver1.mapyrus.

httpresponse "HTTP/1.0 200 OK

Content-Type: image/png"

Display the file coastline.shp in a PNG file that

is sent to standard output.

#

newpage "png", "-", 100, 100

color "red"

dataset "shapefile", "coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

while Mapyrus.fetch.more

do

clearpath

fetch

addpath GEOMETRY

stroke

done

Copy the file coastline.shp from the userdoc subdirectory in the Mapyrus
installation into the same directory as the file tutorialhttpserver1.mapyrus.
In a terminal window, change to the directory containing the two files and start
Mapyrus as an HTTP server on port 8410 with the following command (where
install-dir is the directory in which Mapyrus is installed).

java -classpath install-dir /mapyrus.jar org.mapyrus.Mapyrus -s 8410

Then enter the URL http://localhost:8410/tutorialhttpserver1.mapyrus

in a web browser. Mapyrus receives the request, executes the commands in the
file tutorialhttpserver1.mapyrus and returns the PNG image that is written
to standard output to the web browser.

To return a PDF file instead of a PNG image, enter the following lines into
a text file named tutorialhttpserver2.mapyrus.

httpresponse "HTTP/1.0 200 OK

Content-Type: application/pdf"

Display the file coastline.shp in a PDF file.

#

newpage "pdf", "-", 100, 100

color "forestgreen"

dataset "shapefile", "coastline.shp", "dbffields="

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

99

while Mapyrus.fetch.more

do

clearpath

fetch

addpath GEOMETRY

stroke

done

Then enter the URL http://localhost:8410/tutorialhttpserver2.mapyrus

in a web browser. Mapyrus generates a PDF file instead of a PNG image and
returns it to the web browser.

To return a Scalable Vector Graphics (SVG) file instead of a PNG image,
enter the following lines into a text file named tutorialhttpserver3.mapyrus

and enter the URL http://localhost:8410/tutorialhttpserver3.mapyrus

in a web browser.

httpresponse "HTTP/1.0 200 OK

Content-Type: image/svg+xml"

Display the file coastline.shp in an uncompressed SVG

file that is sent to standard output.

#

newpage "svg", "-", 100, 100

dataset "shapefile", "coastline.shp", ""

worlds Mapyrus.dataset.min.x, Mapyrus.dataset.min.y, \

Mapyrus.dataset.max.x, Mapyrus.dataset.max.y

while Mapyrus.fetch.more

do

clearpath

fetch

addpath GEOMETRY

color "Sandy Brown"

fill

color "Black"

stroke

done

4.45 Passing Variables To Mapyrus HTTP Server Through

URLs

To vary the display that is created by the Mapyrus HTTP Server, include vari-
ables in the URL. For example,

http://localhost:8410/tutorialurl.mapyrus?x=11.13&y=48.24&pLabels=off

The variables X, Y and PLABELS are automatically set in Mapyrus with
the values passed in the URL before interpreting the commands in the file
tutorialurl.mapyrus. Note that variable names are always uppercase.

For applications that manage state and provide a graphical user interface
(such as clients written in Java or PHP), use this method for returning data to
the application.

100

4.46 Returning HTML Pages From Mapyrus HTTP Server

An application for web browsers is based on HTML pages. Generate HTML in
Mapyrus and return it with print commands. Generate temporary images for
the HTML page with unique filenames using the tempname function and return
references to the images in the HTML.

The example file tutorialhtmlpage1.mapyrus demonstrates this, display-
ing ESRI Shape file coastline.shp and text file aust temperatures.dat and
using an HTML form to allow the user to change the map display. These three
files are stored in the userdoc subdirectory in a Mapyrus installation. In a
terminal window change to this directory and start Mapyrus with the HTTP
Server option, as described in section 4.44. Then enter the following URL in a
web browser.

http://localhost:8410/tutorialhtmlpage1.mapyrus

To simplify editing of HTML pages for an application, setup template HTML
pages with placeholders for the information that Mapyrus provides. This enables
the HTML interface to be designed independently from Mapyrus.

In Mapyrus, return the HTML pages with the placeholders replaced by
real values using the replace function. The Mapyrus commands in the file
tutorialhtmlpage2.mapyrus and the template HTML file tutorialhtmlpage2.txt
demonstrate this. Both files are found in the userdoc subdirectory.

4.47 Using JavaScript with Mapyrus HTTP Server

Images generated by Mapyrus are made interactive by defining hyperlinks and
JavaScript functions to execute when the mouse is moved or clicked over the
image. This is achieved by using an HTML imagemap for an image.

A file containing an HTML imagemap is created using the extras imagemap

option to the newpage command.
A hyperlink or JavaScript function is defined for an area in the image using

the eventscript command. The list of areas in the image and hyperlinks and
JavaScript functions are written to the imagemap file.

The image and imagemap file are then combined in an HTML file and re-
turned to the web browser.

The following example file tutorialhtmlpage3.mapyrus demonstrates this,
displaying a tooltip when the mouse is moved over Australia.

httpresponse "HTTP/1.0 200 OK

Content-Type: text/html; charset=UTF-8"

Create image of Australia and imagemap to show a tooltip when

mouse moved over Australia.

let mapFilename = tempname(".html"), pngFilename = tempname(".png")

newpage "png", pngFilename, 90, 90, "imagemap=" . mapFilename

color "forestgreen"

dataset "shapefile", "coastline.shp", "dbffields="

worlds -2800000, 4800000, 2150000, 9190000

while Mapyrus.fetch.more

101

do

fetch

clearpath

addpath GEOMETRY

fill

Define event for area covered by current path.

eventscript "onMouseOver=\"return overlib('Australia');\" \

onMouseOut=\"return nd();\" href=\"http://www.abc.net.au\""

done

endpage

Return HTML page containing image and imagemap we created, using

overlib.js JavaScript library from http://www.bosrup.com/web/overlib/

to provide tooltips over the image.

print '<html><head>'

print '<script type="text/javascript" src="overlib.js"></script>'

print '</head><body>'

print '<div id="overDiv" style="position:absolute; visibility:hidden;'

print 'z-index:1000;"></div>'

print '<map name="m1">' . spool(mapFilename) . '</map>'

print ''

print '</body></html>'

The JavaScript library overlib.js 10 is used to display the tooltips and
must be copied to the same directory as the file tutorialhtmlpage3.mapyrus.

Enter the following URL in a web browser to display the HTML page.

http://localhost:8410/tutorialhtmlpage3.mapyrus

Some knowledge of JavaScript is necessary to understand this example.
This method is also suitable for generating static HTML pages and im-

agemaps.

4.48 Setting Expiry Dates, Cookies and Redirections from

Mapyrus HTTP Server

For images that change infrequently, setting an expiry date prevents a web
browser from making the same request to the HTTP server again.

Change the httpresponse command in the example from section 4.44 to the
following value to stop a web browser from repeating the same HTTP request
within the next 60 seconds.

httpresponse "HTTP/1.0 200 OK

Content-Type: image/png

Expires: " . timestamp(60)

To track the number of times a web browser makes a request to the HTTP
server, include a cookie in the response to an HTTP request. The web browser
then returns this cookie in the HTTP header of the next request. The following
httpresponse command demonstrates this.

10Available from http://www.bosrup.com/web/overlib/

102

let cookie = Mapyrus.http.header['Cookie']

let cookie = replace(cookie, "^count=", "")

httpresponse "HTTP/1.0 200 OK

Content-Type: image/png

Set-Cookie: count=" . (cookie + 1)

To redirect a web browser to a different location, return the following HTTP
header using the httpresponse command.

httpresponse "HTTP/1.0 301 OK

Content-Type: image/png

Location: other-image.png"

4.49 Returning Additional Information From Mapyrus HTTP

Server

Further ideas for building a complete HTML application are:

� For datasets covering a wide area generate two images for each HTML
page. Create a detailed map display and an overview map display with a
box showing the position of the detailed map in the dataset.

� Generate an image containing a scalebar and include this in the HTML
page. See section 4.21 on page 66.

� Restrict datasets to a limited scale range by checking the internal variable
Mapyrus.worlds.scale before displaying a dataset.

� Return a map image as an HTML imagemap. This enables the user to
click in the map to re-center or zoom the display. When the user clicks
in the map another HTTP request is generated. When Mapyrus receives
an HTTP request from a mouse click in an image map the internal vari-
ables Mapyrus.imagemap.x and Mapyrus.imagemap.y are automatically
set with the pixel position clicked in the image (with origin in top-left
corner of the image). Use these variables to calculate the new area to
display.

4.50 Using Mapyrus HTTP Server With OpenLayers

To enable Mapyrus to work together with an interactive OpenLayers 11 web
page, create the following file named tutorialwms1.mapyrus in the directory
containing an OpenLayers installation.

mimetype FORMAT

newpage FORMAT, "-", WIDTH . "px", HEIGHT . "px", "background=lightblue"

worlds BBOX

let c = ["#c51b7d", "#e9a3c9", "#fde0ef", "#e6f5d0", "#a1d76a", "#4d9221"]

dataset "internal", "countries", ""

while Mapyrus.fetch.more do

clearpath

11Available from http://www.openlayers.org

103

fetch

addpath GEOMETRY

color c[COLORCODE]

fill

color "black"

stroke

done

Next, create a file named tutorialwms1.html in the same directory with
the following contents.

<html>

<head>

<style>

#map { width: 384px; height: 384px; }

</style>

<script src="OpenLayers.js"></script>

<script type="text/javascript">

function init() {

map = new OpenLayers.Map("map");

layer = new OpenLayers.Layer.WMS("Countries",

"http://localhost:8410/tutorialwms1.mapyrus", {format: "image/png"});

map.addLayer(layer);

map.setCenter(new OpenLayers.LonLat(5, 40), 5);

}

</script>

</head>

<body onload="init()">

<h1>Mapyrus OpenLayers Example</h1>

<div id="map"></div>

</body>

</html>

In a terminal window, change directory to the OpenLayers installation and
start Mapyrus as an HTTP server on port 8410 with the following command
(where install-dir is the directory in which Mapyrus is installed).

java -classpath install-dir /mapyrus.jar org.mapyrus.Mapyrus -s 8410

Then enter the following URL in a web browser to display the web page with
OpenLayers controls for zooming and panning the map.

http://localhost:8410/tutorialwms1.html

OpenLayers makes HTTP requests to Mapyrus using the OGCWebMapping
Service (WMS) interface. The Mapyrus HTTP Server uses the BBOX, FORMAT,
HEIGHT and WIDTH URL parameters from each request to generate the map
image that is returned.

Edit the Mapyrus commands in tutorialwms1.mapyrus and OpenLayers
JavaScript calls in the HTML file to extend the application.

104

4.51 Using Mapyrus Servlet

The file mapyrus.war provided with Mapyrus contains a web application archive
file. Deploy this file to a running Apache Tomcat web server.

The WAR file is self-contained and contains a Java Servlet that runs Mapyrus
commands. Mapyrus commands are passed to the servlet using the URL pa-
rameter commands in HTTP requests.

When mapyrus.war is deployed to a Tomcat web server running on port
8080, the following HTTP request sends commands to Mapyrus, and returns
the image generated by Mapyrus.

http://localhost:8080/mapyrus/servlet?commands= \
mimetype+'image%2Fpng'%3B+newpage+'png'%2C+'-'%2C+50%2C+50%2C+'background%3Dred'

Enter the following URL to open a web page containing a HTML text area
and form for easy entry of commands to send to Mapyrus.

http://www.mapyrus.org/mapyrus/index.html

Enter the following URL to open a web page demonstrating Mapyrus Servlet
and OpenLayers together. Use the View Source web browser option to see the
JavaScript code that passes Mapyrus commands in HTTP requests.

http://www.mapyrus.org/mapyrus/openlayers.html

4.52 Using Mapyrus JSR 223 Script Engine Interface

Mapyrus implements JSR 223, the javax.script interfaces enabling scripting
languages to be called from Java.

The interface to Mapyrus is automatically registered when the mapyrus.jar
file is included in the Java classpath.

Create a javax.script.ScriptEngine to run Mapyrus commands using the
following Java class:

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

public class JSR223Demo

{

public static void main(String []args)

{

try

{

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("Mapyrus");

engine.eval("newpage 'png', 'j.png', 100, 100\n" +

"color 'yellow'\n" +

"hexagon 50, 50, 40\n" +

"fill\n" +

"endpage");

}

catch (Exception e)

105

{

e.printStackTrace();

}

}

}

4.53 Using Mapyrus In A Java Or Jython Application

Jython is a Java implementation of the Python programming language.
To use Mapyrus in a Jython application, include the file mapyrus.jar in the

Java classpath and then create and use a Mapyrus object in Jython using the
following code:

from java.lang import System

from java.io import IOException

from java.lang import InterruptedException

from org.mapyrus import Mapyrus, MapyrusException

cmds1 = ["newpage 'png', 'j.png', 100, 100", "color 'yellow'"]

cmds2 = ["hexagon 50, 50, 40", "fill"]

m = Mapyrus()

try:

m.interpret(cmds1, System.in, System.out)

m.interpret(cmds2, System.in, System.out)

m.close()

except MapyrusException, ex:

print "Error:", ex

except IOException, ex:

print "Error:", ex

except InterruptedException, ex:

print "Error:", ex

To make Mapyrus draw into an image created in the application, add the
following code before interpreting Mapyrus commands:

b = BufferedImage(200, 200, BufferedImage.TYPE_4BYTE_ABGR)

m.setPage(b, "")

The same constructors and method calls are used to embed Mapyrus in a
Java application.

4.54 Calling Java Functions From Mapyrus

Java provides a large library of classes. Class methods that are declared public

and static are available as functions in Mapyrus. The following examples
demonstrate calling Java methods from Mapyrus.

print java.lang.Integer.toHexString(32767)

let b = java.lang.Integer.parseInt("101110", 2)

let dummy = java.lang.Thread.sleep(1000)

print com.vividsolutions.jts.io.WKTWriter.stringOfChar("x", 12)

106

4.55 Creating SVG Files With Event Handling

Scalable Vector Graphics files are made interactive by adding JavaScript func-
tions and defining mouse events that call these functions.

Groups of shapes or layers are defined by adding extra XML <g> tags to an
SVG file.

Using the following JavaScript contained in file svg1.js

<script type="text/ecmascript">

<![CDATA[

function highlight(evt, color)

{

alert("event at " + evt.clientX + ", " + evt.clientY);

evt.target.setAttribute("style", "fill:" + color);

}

]]></script>

the next example demonstrates creating an SVG file with mouse events that
change the color of shapes when the mouse is moved over the shapes. XML
<g> tags are also added to the SVG file using the svgcode command to identify
different groups of shapes or layers.

newpage "svg", "tutorialsvg1.svg", 30, 30, "scriptfile=svg1.js"

svgcode '<g id="layer1">'

color "indigo"

circle 20, 20, 10

fill "onmouseover='highlight(evt, \"yellow\")'"

svgcode '</g>'

clearpath

svgcode '<g id="layer2">'

box 0, 0, 10, 10

linestyle 2

color "red"

stroke "onmouseover='highlight(evt, \"green\")' onmouseout='highlight(evt, \"blue\")'"

svgcode '</g>'

4.56 Building Mapyrus From Source

To build Mapyrus from source code, the following development tools are re-
quired:

� Git Version Control System.

� Ant build tool.

� Java 2 SDK 6, or higher.

� JTS Topology Suite 1.13, or higher from http://www.tsusiatsoftware.net/jts/main.html.

107

� Oracle JDBC driver JAR file ojdbc14.jar and Oracle Spatial data types
JAR file sdoapi.jar from an Oracle 10g database, or higher. This is
only required for reading of Oracle Spatial column types from an Oracle
database.

� Servlet API JAR file servlet-api.jar from Apache Tomcat 7 or later.

� Java PROJ.4 JAR file javaproj-1.0.9.jar from http://www.jhlabs.com/java/maps/proj.

� LATEX.

First, checkout the source code from the Mapyrus git server using the fol-
lowing command.

git clone https://github.com/simoc/mapyrus

The build process build is defined in the file build.xml in the Mapyrus
installation directory. To build the software, documentation and zip file for dis-
tribution, create a terminal window, change to the directory in which Mapyrus
is installed and execute the following command.

ant -v

The build process also generates the PDF manual and manual examples in
the userdoc subdirectory from source files using LATEX.

All source code is in Java and contains javadoc style comments. To view
and edit the source code, use a Java development environment such as Eclipse
and import the source code into a new project.

4.57 Sample Shapes And Patterns

The file symbols.mapyrus included in the subdirectory userdoc contains many
examples of shapes and patterns for lines and fills. A legend for all examples in
this file is shown in Figure 4.57.

108

My Title
Land

Sea

State

ACT

NSW

NT

QLD

SA

TAS

VIC

WA

Rating

B

A-

C

AA

B

C+

D

B

0 200 400 600 800
kilometers

Figure 75: Page Layout

109

N

 northarrow

N

E

S

W nsew

5 Point Star

6 Point Star

Arrow Down

Arrow Left

Arrow Right

Arrow Up

Arrow Up Left

Border Crossing

Camping

Capital CityELY

Cave

Cemetary

Church

Circle Outline

CityEly

Covered ParkingP

Crosshair

Emphasised NameHOT

Equi. Triangle

Factory

Fairground

Filled Hexagon

Filled Square

Flag

Hospital

Hut

Information
i

Library

Lighthouse

New Moon

Octagon Outline

Old Moon

ParkingP

Pennant

Police

Post Office

Quadrant ChartQ2
Q3Q4

Q1

Location
Radio Tower

S-Bahn StationS

School

Shipwreck

Speech Bubble

speech
bubble

Square Outline

Street NameSesame St

Survey Marker

Temperature10
20
30°C

SYDNEY

TownElyElyElyElyElyEly

Traffic Lights

Tree

Trig. Station

U-bahn StationU

Viewpoint

Figure 76: Sample Shapes And Patterns 1

110

Waypoint

Wind from SE at force 5

Wind from SW at force 1

Wind from SW at force 2

Wind from SW at force 3

Witch’s Hat

pentagon1

plus1

x1

Arrow Line

Border

Bow Ties

Centerlinec c

Dash Dot Line

Fence

Inaccurate Line

Left Ticks

MotorwayM25

Multi Color Line

Power Line

Railway

Snake Line

Aggregate

Bare Rock

Box Fill

Brick Fill

Chessboard Pattern

Circle Fill

City Limits

Crosshatch

Dot Pattern

Double Stripes

Grassland

Half Fill

Halftone

Hash Fill

#
#
#
#
#

Hatch 1

Hatch 2

Hatch 3

Hatch 4

Marsh

Mesh

Quilt Fill

Restricted Area

Stipple

Trellis Tiling

Triple Stripes

Wall Tiling

Water

Weave Fill

Wedge Fill

Wheat Field

Figure 77: Sample Shapes And Patterns 2

111

5 Reference

5.1 Software Requirements

Mapyrus requires:

� Java 2 Runtime Environment, Standard Edition, (J2RE) 6 or higher, or
Java 2 Software Developers Kit, Standard Edition (J2SDK) 6 or higher.

� The $DISPLAY environment variable set to an X-Windows display, if run-
ning on Linux or a UNIX operating system. If a real X-Windows display
is not available, use the -Djava.awt.headless=true startup variable.

� The JTS Topology Suite from http://www.tsusiatsoftware.net/jts/main.html,
if geometric functions are required (see Table 3 on page 114).

� The Java PROJ.4 library from http://www.jhlabs.com/java/maps/proj,
if the REPROJECT function is required for reprojecting coordinates.

5.2 Usage

The Mapyrus software is contained in a single Java JAR file. Start Mapyrus in
a Java interpreter with the following command.

java -classpath install-dir /mapyrus.jar org.mapyrus.Mapyrus filename

...

install-path is the directory in which Mapyrus is installed. filename is the
name of a file or a URL for Mapyrus to read from. If filename is - then standard
input is read. If several filenames and URLs are given then they are read in
turn.

Environment variables and variables passed to Mapyrus using the Java -D

option are available in the Mapyrus interpreter. The JTS Topology Suite JAR
file and other JAR files to be used in combination with Mapyrus are included
in the -classpath option.

java -Dvariable =value ... \
-classpath install-dir /mapyrus.jar:jts-dir /jts-1.13.jar:other-jarfile \
org.mapyrus.Mapyrus filename

Mapyrus runs as an HTTP Server when started with the -s option.

java -classpath install-dir /mapyrus.jar:jarfile \
org.mapyrus.Mapyrus -s port filename ...

Use the -Xmx Java option to make more memory available when running
Mapyrus. To increase available memory to 256Mb, use the following command:

java -Xmx256m -classpath install-dir /mapyrus.jar org.mapyrus.Mapyrus filename ...

5.2.1 Startup Configuration

The variables available for configuring Mapyrus at startup are shown in Table
1.

112

Variable Description

Mapyrus.rgb.file=filename Defines an X Windows color names file
containing additional color names for
the color command. Default value is
/usr/lib/X11/rgb.txt

java.awt.headless=true Run in headless mode. Required when run-
ning on a server with no graphics display.

java.io.tmpdir=dir Defines directory to use for temporary files.
Large images in PDF output are temporarily
saved in this directory until output is com-
plete.

jdbc.drivers=class Defines class containing JDBC 1.0 (or higher)
driver to load at startup. A JDBC driver
is required for connecting to a relational
database and is provided as part of a rela-
tional database. See the Java JDBC Driver-
Manager API documentation 12 for details.
The JAR file containing the class must be in-
cluded in the -classpath option when start-
ing Mapyrus.

Table 1: Startup Variables

5.3 Language

Mapyrus interprets commands read from one or more plain text files. Each
command begins on a separate line or after a semi-colon (;).

Any part of a line following a hash (#) or a pair of slashes (//) that is not part
of a literal string is interpreted as a comment and is ignored. C programming /*
. . . */ style comments are also ignored. Leading and trailing spaces or tabs on a
line are ignored too. A backslash (\) character at the end of a line is interpreted
as a line continuation and the line and next line are joined into a single line.

A line beginning with the word include, followed by a filename or URL
includes commands from another file.

Each command is passed zero or more arguments separated by commas. An
argument is a number, a string literal in single quotes (´) or double quotes (¨),
a variable name, an array, an array element or an expression.

In a string literal, the character sequence \nnn is interpreted as an octal
character code (where nnn is one to three digits) and the character sequence
\unnnn is interpreted as a Unicode character (where nnnn is four hexadecimal
digits).

An expression contains arguments and operators and functions on those
arguments, like in BASIC, C, or Python. Available operators are shown in
Table 2. Pre-defined functions are shown in Table 3. Java methods are also
available as functions by giving the class name and method name separated
by a dot. Only Java methods declared as public and static are available as
functions.

12Available from http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html

113

Operator Description

(,) parentheses
++, -- increments or decrements variable
*, /, %, x numeric multiplication, numeric division,

modulo (works with non-integer values too),
string repetition

+, -, . numeric addition, numeric subtraction, string
concatenation

<=, <, ==, !=, >, >=, lt, le, eq, ne, gt, ge numeric comparisons and string comparisons
?: ternary conditional operator
and, or, not Logical and, or, not

Table 2: Operators

Function Name Description

abs(n) Returns the absolute value of n.
axis(min, max, intervals) Generates a set of numbers that are suitable

for an axis of a graph containing values in the
range min to max. intervals sets the maxi-
mum number of values for the axis. An array
is returned with each value for the axis.

buffer(g, dist, cap) Returns a geometry containing a buffer calcu-
lated at a distance dist around the perimeter
of geometry g. The value of cap defines the
method of closing buffers at line endpoints,
either butt, round or square. This function
requires the JTS Topology Suite.

ceil(n) Returns the smallest integer value that is not
less than n.

chr(n) Returns a string containing the single Unicode
character code n.

contains(g1, x, y)

contains(g1, g2)

If point (x, y) or geometry g2 is contained
inside g1 then 1 is returned. Otherwise 0 is
returned. Geometries may be the same type
or different types. This function requires the
JTS Topology Suite.

convexhull(g) Returns a convex hull geometry that sur-
rounds geometry g.

cos(n) Returns the cosine of angle n, given in degrees.
crosses(g1, g2) If geometry g2 crosses g1 then 1 is returned.

Otherwise 0 is returned. Geometries must be
of different types. To compare geometries of
the same type, use overlaps. This function
requires the JTS Topology Suite.

Table 3: Functions

114

Function Name Description

difference(g1, g2) Returns a geometry containing the difference
between geometry g1 and geometry g2. That
is, parts of geometry g1 that are not part of
geometry g2. This function requires the JTS

Topology Suite.
dir(p) Returns an array of all filenames matching

the wildcard pattern p containing asterisk (*)
characters.

floor(n) Returns the largest integer value that is not
larger than n.

format(str, n) Returns the number n formatted using for-
mat string str. Format string is given using
hash characters and zeroes for digits and an
optional decimal point. For example, 00000
for a five digit number with leading zeroes, or
##.### for a number rounded to three decimal
places.

geojson(g) geojson(g, p)

geojson(g, p, id)

Returns a feature containing geometry g in
GeoJSON format. Additional key and value
properties and a feature identifier are in-
cluded, if array p and identifier id are given.

interpolate(str, n) Returns value calculated from n using linear
interpolation. str contains list of numbers
(given in increasing numeric order) and cor-
responding values: n1 v1 n2 v2 Result is
found by finding range ni to ni+1 containing
n and using linear interpolation to calculate a
value between vi and vi+1. Each value vi is
either a number, named color, hex digits color
or CMYK color in parentheses.

intersection(g1, g2) Returns a geometry containing the intersec-
tion of geometry g1 and geometry g2. This
function requires the JTS Topology Suite.

length(v) If v is an array, then the number of elements
in the array is returned. Otherwise the string
length of v is returned.

log10(n) Returns the base 10 logarithm of n.
lower(str) Returns str converted to lower case.
lpad(str, len, pad)

lpad(str, len)

Returns string str left padded to length len

using characters from string pad. Spaces are
used for padding if pad is not given. String is
truncated on the left if longer than length len.

Table 3: Functions

115

Function Name Description

match(str, regex) Returns the index in the string str, where the
regular expression regex is first matched. The
index of the first character is 1. If the reg-
ular expression does not match str, then 0 is
returned. The Java API documentation 13 de-
scribes the syntax of regular expressions.

max(a, b) Returns the larger of values a and b.
min(a, b) Returns the smaller of values a and b.
overlaps(g1, g2) If geometry g1 and geometry g2 are the same

type and overlap then 1 is returned. Other-
wise 0 is returned. This function requires the
JTS Topology Suite.

parsegeo(n) Parses string n containing a latitude or longi-
tude position into a decimal value and returns
it. Strings of many forms are accepted, includ-
ing 42.196597N, 42° 11´ 47.75¨, 42d 11m

47.75s, N 42d 11m 47.75s and 42deg 11min

47.75sec.
pow(a, b) Returns a to the power b.
protected(x1, y1, x2, y2)

protected(g) protected()

For points (x1, y1) and (x2, y2) defining any
two opposite corners of a rectangle, returns 1
if any part of this rectangle has been protected
using the protect command. For polygon ge-
ometry g, returns 1 if any part of the polygon
has been protected. When no rectangle or ge-
ometry is given then 1 is returned if any part
of the current path has been protected. Oth-
erwise 0 is returned.

random(n) Generates a random floating point number be-
tween 0 and n.

readable(filename) Returns 1 if the file filename exists and is read-
able. Otherwise 0 is returned.

replace(str, regex,

replacement)

Returns the string str, with all occurrences of
the regular expression regex replaced by re-

placement.
reproject(p1, p2, g)

reproject(p1, p2, x, y)

Reprojects the geometry g or point (x, y) from
projection p1 to projection p2. Projections
are names in the PROJ.4 database or a list of
PROJ.4 projection parameters separated by
whitespace. This function requires the Java

PROJ.4 library.
roman(n) Returns the number n converted to a Roman

numerals string.
round(n) Returns n rounded to nearest whole number.

Table 3: Functions

13Available from http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

116

Function Name Description

rpad(str, len, pad)

rpad(str, len)

Returns string str right padded to length len

using characters from string pad. Spaces are
used for padding if pad is not given. String is
truncated if longer than length len.

sin(n) Returns the sine of angle n, given in degrees.
split(str, regex)

split(str, regex, extras)

split(str)

Splits the string str into an array of strings,
delimited by the regular expression regex or
whitespace if no regular expression given. The
array of split strings is returned, with the first
string having array index 1, the second string
having index 2, and so on. If extras contains
includedelimiters=true then delimiters are
included in the array too.

spool(filename)

spool(filename, extras)

Returns string containing contents of text file
filename. If filename has suffix .gz or .zip

then it is automatically decompressed as it
is read. If extras contains encoding=charset

then characters in file are interpreted with
that character set encoding.

sqrt(n) Returns square root of n.
stringascent(str) Returns the ascent of the string str if it were

displayed using the label command. The as-
cent is the distance above the label position of
the tallest character in the string. For strings
containing several lines, the total ascent of all
lines is returned. The ascent is returned in
world coordinate units if set with a worlds

command, otherwise in page coordinates.
stringdescent(str) Returns the descent of the string str if it were

displayed using the label command. The de-
scent is the distance below the label position
used by characters such as g and y and is re-
turned as a negative number. For strings con-
taining several lines, the descent of the first
line is returned. The descent is returned in
world coordinate units if set with a worlds

command, otherwise in page coordinates.
stringheight(str) Returns the height of the string str if it

were displayed using the label command.
For strings containing several lines, the total
height of all lines is returned. The height is
returned in world coordinate units if set with
a worlds command, otherwise in page coordi-
nates.

Table 3: Functions

117

Function Name Description

stringwidth(str) Returns the width of the string str if it were
displayed using the label command. For
strings containing several lines, the width of
the longest line is returned. The width is re-
turned in world coordinate units if set with a
worlds command, otherwise in page coordi-
nates.

sum(a) Returns the sum of values in array a.
substr(str, offset, n)

substr(str, offset)

Returns a substring of the string str, begin-
ning at the character with index offset that is
n characters long, or all characters from index
offset if n is not given. The first character in
str has an index of 1.

tan(n) Returns the trigonometric tangent of angle n,
given in degrees.

tempname(suffix) Returns a unique temporary filename with
given file suffix, for use when running as an
HTTP server. Temporary files returned by
this function are automatically deleted after 5
minutes.

timestamp(n) Returns a time stamp containing the current
GMT date and time plus n seconds, for use
in setting expiry dates when running as an
HTTP server.

topage(x, y) topage(g) Transforms the point (x, y) or geometry g

from the current world coordinate system to
page coordinates.

toworlds(x, y) toworlds(g) Transforms the point (x, y) or geometry g

from page coordinates to the current world
coordinate system. This is the inverse of the
topage function.

trim(str) Returns string str with whitespace trimmed
from start and end.

union(g1, g2) Returns a geometry containing the union of of
geometry g1 and geometry g2. This function
requires the JTS Topology Suite.

upper(str) Returns str converted to upper case.

Table 3: Functions

118

Function Name Description

wordwrap(str, width)

wordwrap(str, width,

extras)

Returns str broken into several lines for use
in a label command. Each line will not
be longer than width millimeters wide. If
extras contains hyphenation=str then words
containing the hyphenation string may also be
split onto two lines at that point using a hy-
phen. If extras contains adjustspacing=true
then additional spaces are added between
words so that each line has the required width.
If extras contains preservenewlines=true

then newlines in str are preserved.

Table 3: Functions

An argument or expression is assigned to a named variable using the let

command and an equals sign (=). A variable name begins with a letter or dollar
sign ($) and contains only letters, numbers, dots (.), underbars () and colons
(:). Variable names are case-sensitive. Variables and array elements that are
accessed without having been defined have a value of zero, or an empty string.

Variables accepted as parameters to a function or procedure, or declared in
the function or procedure with the local command are local to that function or
procedure and not visible outside the function or procedure. All other variables
are global.

Individual array elements are accessed by giving the index between square
brackets ([and]). The index is any string or number value. Multi-dimension
arrays are available by using indexes named index1."c".index2, where c is any
character that never appears in an index.

An array with sequential indexes starting at 1 is defined as a single argument
by surrounding the values by square brackets [value1, value2, ...]. To
define both keys and values for an array use {"key1 ": value1, "key2 ":

value2, ... }.
The if, repeat, while, for and function flow control structures found in

other languages are available:

if condition then

then-commands ...

else

else-commands ...

endif

if condition then command ; command ; else command ; command ; endif

Executes then-commands if condition evaluates to a non-zero value, other-
wise else-commands are executed. The else part is optional. Compound tests
are built using the elif keyword:

if condition then

commands ...

elif condition then

119

commands ...

endif

The repeat keyword defines a loop in which commands will be executed
count times:

repeat count do

commands ...

done

repeat count do command ; command ; done

The while keyword defines a loop in which commands will be executed for
as long as condition continues to evaluate to a non-zero value:

while condition do

commands ...

done

while condition do command ; command ; done

The for . . . in keywords define a loop in which each element of array is
assigned to variable var and commands are executed. Elements in array are ac-
cessed in numerical index order if indexes are numeric, otherwise in alphabetical
index order:

for var in array do

commands ...

done

for var in array do command ; command ; done

Functions are used to repeat commonly used calculations and to return a
value:

function name [arg1 , ...]

commands ...

return arg

end

function name [arg1 , ...]; command ; command ; return arg ; end

Procedures group frequently used commands together, save graphics state
when they begin and restore it when they end, isolating the calling procedure
from any changes:

begin name [arg1 , ...]

commands ...

end

begin name [arg1 , ...]; command ; command ; end

120

A procedure is defined to take a fixed number of arguments. All procedure
names are global and following the same naming rules as variables. Procedure
definitions within a procedure are not allowed. The return keyword returns a
from a procedure to the calling procedure.

A procedure is called from any place where a command is accepted and the
number of arguments passed must match the number in the procedure definition.

Before commands in the procedure are executed the graphics state is saved.
The graphics state is restored when the procedure finishes. The graphics state
contains:

1. The path defined with move, draw, box, arc, bezier, circle, cylinder,
ellipse, hexagon, pentagon, sinewave, spiral, star, triangle, wedge
and addpath commands.

2. The clip path defined with clip commands.

3. Current drawing settings set by color, linestyle, font and justify

commands.

4. Transformations set by rotate and scale commands.

5. The output file set by a setoutput command.

Any new page created in a procedure with a newpage command is completed
when the procedure finishes and output returns to the page being created before
the procedure was called.

Any dataset being read is global and protected regions are global. They are
not saved and not restored.

Any world coordinate system set with the worlds command is cleared before
the commands in the procedure are executed. This enables the calling procedure
to work in a world coordinate system and the called procedure to draw at these
world coordinate positions using measurements in millimeters.

If the current path contains only move points and no straight line or arc
segments when a procedure is called then the procedure is called repeatedly,
one time for each move point, with the origin (0, 0) translated to the move point
each time and the path reset to empty. Therefore, coordinates in the called
procedure are relative to the move point. This enables drawing commands in
the called procedure to be given in millimeters, relative to each move point.

5.4 Internal Variables

All environment variables and Java standard system properties (os.arch, user.dir,
etc.) are defined as variables in Mapyrus.

Mapyrus maintains the internal variables shown in Table 4.

Variable Name Description

Mapyrus.dataset.fieldnames An array containing the names of fields be-
ing read from the current dataset. The first
fieldname has array index 1.

Table 4: Internal Variables

121

Variable Name Description

Mapyrus.dataset.projection A description of the projection (coordinate
system) in which coordinates of the current
dataset are stored. Projection descriptions
are not standardised between dataset formats.
Different dataset formats will return different
descriptions for the same projection.

Mapyrus.dataset.min.x,
Mapyrus.dataset.min.y,
Mapyrus.dataset.max.x,
Mapyrus.dataset.max.y,
Mapyrus.dataset.center.x,
Mapyrus.dataset.center.y

The bounding rectangle of all data in the cur-
rent dataset.

Mapyrus.fetch.count The number of records already fetched from
the current dataset.

Mapyrus.fetch.more Flag value set to 1 if another record is available
for fetch command, or 0 if no more records
available.

Mapyrus.filename The name of the file or URL being interpreted.
Mapyrus.freeMemory The amount of free memory that Java has

available, in bytes.
Mapyrus.http.header An array containing header information

passed in the HTTP request when run-
ning as an HTTP server. Useful values
are Mapyrus.http.header[’Referer’]

giving the name of the referring HTML
page, Mapyrus.http.header[’Cookie’]

giving the contents of a cookie set
by a previous HTTP request and
Mapyrus.http.header[’User-Agent’]

giving the name of the web browser making
the HTTP request.

Mapyrus.imagemap.x,
Mapyrus.imagemap.y

The pixel position of the point clicked in an
HTML imagemap and passed to Mapyrus, for
use when running as an HTTP server. Both
values are set to -1 if no imagemap point
passed in current URL.

Mapyrus.key.count The number of legend entries defined with key

commands that have not yet been displayed
with a legend command.

Mapyrus.key.next The name of the of the next procedure to be
displayed by the legend command.

Mapyrus.page.format,
Mapyrus.page.height,
Mapyrus.page.width,
Mapyrus.page.resolution.dpi,
Mapyrus.page.resolution.mm

The file format, page height, page width and
resolution that were passed to the newpage

command. File format is in lowercase. Height
and width are in millimeters. Resolution is
available as either a dots-per-inch value, or a
distance in millimeters between dots.

Table 4: Internal Variables

122

Variable Name Description

Mapyrus.path The current path as an OGC WKT geometry
with coordinates measured in millimetres.

Mapyrus.path.length,
Mapyrus.path.area,
Mapyrus.path.start.angle,
Mapyrus.path.start.x,
Mapyrus.path.start.y,
Mapyrus.path.end.angle,
Mapyrus.path.end.x,
Mapyrus.path.end.y,
Mapyrus.path.min.x,
Mapyrus.path.min.y,
Mapyrus.path.max.x,
Mapyrus.path.max.y,
Mapyrus.path.center.x,
Mapyrus.path.center.y,
Mapyrus.path.width,
Mapyrus.path.height

The length of the current path on the page
measured in millimeters, the area of the cur-
rent path measured in square millimeters,
the coordinates and angles at the start and
end of the path in degrees measured counter-
clockwise, and the bounding rectangle of the
current path.

Mapyrus.rotation The current rotation angle in degrees set by
rotate command. Returned value is nor-
malised to fall in the range -180 to +180 de-
grees.

Mapyrus.scale The current scale factor set by scale com-
mand.

Mapyrus.screen.height,
Mapyrus.screen.width,
Mapyrus.screen.resolution.dpi,
Mapyrus.screen.resolution.mm

The height, width and resolution of the screen
in which Mapyrus is running. Height and
width are in millimeters. Resolution is avail-
able as either a dots-per-inch value, or a dis-
tance in millimeters between dots.

Mapyrus.time.day,
Mapyrus.time.month,
Mapyrus.time.year,
Mapyrus.time.hour,
Mapyrus.time.minute,
Mapyrus.time.second,
Mapyrus.time.day.of.week,
Mapyrus.time.day.name,
Mapyrus.time.month.name,
Mapyrus.time.week.of.year,
Mapyrus.time.stamp

Components of the current date and time.
Day of week has value 1 for Monday through
to 7 for Sunday.

Mapyrus.timer The elapsed processing time, measured in sec-
onds.

Mapyrus.totalMemory The total amount of memory available to Java,
in bytes.

Mapyrus.version The version of the software.

Table 4: Internal Variables

123

Variable Name Description

Mapyrus.worlds.min.x,
Mapyrus.worlds.min.y,
Mapyrus.worlds.max.x,
Mapyrus.worlds.max.y,
Mapyrus.worlds.center.x,
Mapyrus.worlds.center.y,
Mapyrus.worlds.width,
Mapyrus.worlds.height

The bounding rectangle of world coordinates
set with the worlds command.

Mapyrus.worlds.scale The real-world scale factor, determined by di-
viding of the X axis world coordinate range by
the page width.

Table 4: Internal Variables

5.5 Commands

Commands are listed alphabetically. The arguments required for each com-
mand are given. Some commands accept arguments in several ways. For these
commands, each combination of arguments is given.

5.5.1 addpath

addpath geometry-field [, geometry-field ...]

Adds geometry in each geometry-field to current path. A geometry-field is
geometry fetched from a dataset with a fetch command or a string containing
an OGC WKT geometry.

Coordinates are transformed through any transformation set with a worlds

command, then scaled and rotated by scale and rotate values.

5.5.2 arc

arc direction , xCenter , yCenter , xEnd , yEnd

Adds a circular arc to the current path. The arc begins at the last point
added to the path and ends at (xEnd, yEnd) with center at (xCenter, yCenter).
If direction is a positive number, the arc travels clockwise, otherwise the arc
travels in an anti-clockwise direction. If the begin and end points are the same
then the arc is a complete circle. A straight line segment is first added to the
path if the distance from the beginning point to the center is different to the
distance from the center to the end point.

Points are transformed through any transformation set with a worlds com-
mand, then scaled and rotated by scale and rotate values.

5.5.3 bezier

bezier xControl1 , yControl1 , xControl2 , yControl2 , xEnd , yEnd

Adds a Bezier curve (a spline curve) to the current path. The curve begins
at the last point added to the path and ends at (xEnd, yEnd) with control points
(xControl1, yControl1) and (xControl2, yControl2).

124

The control points define the direction of the line at the start and end points
of the Bezier curve. At the start of the Bezier curve, the direction of the curve
is towards the first control point. At the end of the Bezier curve, the direction
of the curve is from the second control point.

Points are transformed through any transformation set with a worlds com-
mand, then scaled and rotated by scale and rotate values.

5.5.4 blend

blend mode

Sets the blend mode for transparent colors. Transparent colors are mixed
differently with background colors depending on the blend mode.

Blend mode is one of Normal, Multiply, Screen, Overlay, Darken, Lighten,
ColorDodge, ColorBurn, HardLight, SoftLight, Difference or Exclusion.

The effect of each blend mode is described in the PDF Reference Manual,
available from http://www.adobe.com. Only the first six blend modes are avail-
able for SVG format output.

5.5.5 box

box x1 , y1 , x2 , y2

Adds a rectangle to the current path. The points (x1, y1) and (x2, y2)
define any two opposite corners of the rectangle.

The two corner points of the box are first transformed through any world
coordinate transformation set with a worlds command, then scaled and rotated
by scale and rotate values.

5.5.6 box3d

box3d x1 , y1 , x2 , y2 [, depth]

Adds a rectangle to the current path in the same way as the box command.
The right side and top sides of the box are also added to the current path to
give a 3 dimensional effect.

The depth of the right and top sides is optional. If not given then the the
smaller of box height and box width is used.

The two corner points and depth of the box are first transformed through
any world coordinate transformation set with a worlds command, then scaled
and rotated by scale and rotate values.

5.5.7 chessboard

chessboard x1 , y1 , x2 , y2 , size

Adds squares in a chessboard pattern to the current path. The points (x1,
y1) and (x2, y2) define any two opposite corners of a rectangular area for the
pattern, with size defining the size of each square.

The two corner points and size of squares are first transformed through any
world coordinate transformation set with a worlds command, then scaled and
rotated by scale and rotate values.

125

5.5.8 circle

circle xCenter , yCenter , radius

Adds a circle to the current path, with center point (xCenter, yCenter) and
radius radius.

The center point and radius are transformed through any transformation set
with a worlds command, then scaled and rotated by scale and rotate values.

5.5.9 clearpath

clearpath

Removes all points from the current path.

5.5.10 clip

clip side

Sets a clip path to the area covered by the current path, or excluding the
area covered by the current path, depending on the value side.

If side has value inside then later drawing commands are limited to draw
only inside the area covered by current path. If side has value outside then
later drawing commands are limited to draw only outside the area covered by
current path.

If the path is clipped in a procedure, then the area remains clipped until
the procedure is complete. Otherwise, the area remains permanently clipped
for the page. When more than one path is clipped, drawing is limited to areas
that satisfy all clip paths.

The current path is not modified by this command.

5.5.11 closepath

closepath

Closes the current path by adding a straight line segment back to the last
point added with a move command.

5.5.12 color

color name [, alpha]

color "contrast" [, alpha]

color "brighter" [, alpha]

color "darker" [, alpha]

color "softer" [, alpha]

color "current" [, alpha]

color "#hexdigits " [, alpha]

color "0xhexdigits " [, alpha]

color "cmyk(cyan ,magenta ,yellow ,black)" [, alpha]

color "rgb", red , green , blue [, alpha]

color "hsb", hue , saturation , brightness [, alpha]

color "cmyk", cyan , magenta , yellow , black [, alpha]

126

Sets color for drawing. Around 500 commonly used color names are defined,
additional color names are defined in a file given as a startup variable (see Table
1 on page 113). Color names are case-insensitive.

If color name is contrast then color is set to either black or white, whichever
constrasts more with the current color.

If color name is brighter, darker or softer then color is set to a brighter,
darker or softer version of the current color.

If color name is current then the current color is set again.
hexdigits is a 6 digit hexadecimal value defining RGB values, as used in

HTML pages.
red, green and blue values for RGB colors and hue, saturation and brightness

values for Hue-saturation-brightness (HSB) colors are given as intensities in the
range 0-1.

cyan, magenta, yellow and black values for CMYK colors are in the range
0-1.

The alpha value is optional and defines transparency as a value in the range
0-1. An alpha value of 1 is completely opaque and the color overwrites under-
lying colors. An alpha value of 0 is completely transparent and the color is not
visible. Intermediate values are partially transparent and the color is blended
with colors of underlying shapes on the page. The blend command controls
how transparent colors are mixed with background colors.

Colors are opaque if an alpha value is not given.
Transparent colors are only available for BMP, JPEG, PNG, PPM, SVG,

PDF and Encapsulated PostScript format image (epsimage) output.
The PostScript language does not contain any functions for setting trans-

parency. All colors in PostScript and Encapsulated PostScript files will be
opaque.

The spelling colour is also accepted for this command.

5.5.13 cylinder

cylinder xCenter , yCenter , radius , height

Adds a cylindrical shape to the current path, with center point (xCenter,
yCenter) and given radius and height.

The center point, radius and height are transformed through any transfor-
mation set with a worlds command, then scaled and rotated by scale and rotate

values.

5.5.14 dataset

dataset format , name [, extras]

Defines a dataset to read from. A dataset contains geographic data, geome-
try, attributes, a lookup table, data to write to standard output, or a combina-
tion of these.

dataset is the filename of the dataset to read. format is the format of the
dataset and extras defines further options for accessing the dataset, given as
variable=value values, separated by whitespace. Data formats and options are
shown in Table 5.

127

Dataset Format Description and Extras

internal Reads a dataset included inside Mapyrus. Available dataset
names are countries, capitals and usa.
Dataset countries contains the following fields for each record:

� GEOMETRY Polygon with country border

� ISOCODE Country ISO code

� COUNTRY Country name

� POP2005 Population in year 2005

� COLORCODE number in range 1 - 6, with neighbouring coun-
tries having different color codes.

Dataset capitals contains the following fields for each record:

� GEOMETRY Point with capital

� COUNTRY Country name

� CAPITAL Capital city name

Dataset usa contains the following fields for each record:

� GEOMETRY Polygon with US state border

� STATE US state name

� STATECODE two letter US state code

� COLORCODE number in range 1 - 6, with neighbouring states
having different color codes.

Extras:
xmin=x1 , ymin=y1 , xmax=x2 , ymax=y2
Bounding rectangle of data to fetch. Data outside this rectangle
is not fetched. Setting bounding rectangle to same values as world
coordinate values in worlds command improves performance.

Table 5: Dataset Formats

128

Dataset Format Description and Extras

jdbc Accesses data held in a relational database with an SQL select

statement via JDBC. name contains the SQL query to execute.
For each fetched record, field values are assigned to variables with
the name of the fields. Field values that are NULL are converted
to either an empty string, or numeric zero, depending on their
type. Binary and blob fields are interpreted as OGC WKB geom-
etry values.
Some databases convert all field names to upper case, or to low-
ercase. Use a field name alias for fields that are the result of an
expression.

Extras:
driver=string

The name of the Java class containing a JDBC 1.0 (or higher)
driver for connecting to the database. This class name is required
if not given in the startup variable jdbc.drivers (see Table 1 on
page 113). The JAR file containing the class must be included in
the -classpath option when starting Mapyrus.

url=string

URL containing the database name, host and other information
for identifying the database to connect to. The format of this
string is database dependent. The database remains connected
after use and the connection is reused in later dataset commands
with the same url value. When Mapyrus is run using the HTTP
server option, a pool of database connections are used for each url

value to avoid continually reconnecting to the database. Mapyrus
automatically closes bad and idle connections and Mapyrus will
reconnect if the database is restarted.

user=string

Username for connecting to the database.

password=string

Password for connecting to the database.

jndiname=string

Java JNDI resource name of DataSource to use for database con-
nection. Available when running as a servlet within Apache Tom-
cat. Tomcat provides database connection pooling with database
connections obtained using a JNDI lookup. JNDI resource names
are commonly of the form java:/comp/env/jdbc/MYDB1. No
other options are required when using a JNDI name. The database
driver, user, password and URL are set in mapyrus.war, in files
WEB-INF/web.xml and META-INF/context.xml.

Other values are set as properties for the JDBC driver.

Table 5: Dataset Formats

129

Dataset Format Description and Extras

osm Reads from OpenStreetMap URL or file name. Each node or way
is fetched as a separate record. For each node or way, the variable
TYPE is set to either node or way to indicate the type of data, ID is
set to the ID of the node or way, GEOMETRY is set to the geometry
of the node or way, and TAGS is created as an array containing the
tag information for the node or way.

shapefile Reads from ESRI Shape format file with URL or filename name.
The geometry for each fetched record is assigned to a variable
named GEOMETRY, attribute field values are assigned to variables
with attribute field names.

Extras:
dbffields=field1,field2,...

Comma-separated list of attribute fields to read from the DBF
database file accompanying the Shape file. By default, all fields
are read. Reading fewer attribute fields improves performance.

encoding=charset

Character set encoding of file. Common character set encodings
are UTF-8 (Unicode) and ISO-8859-1 (also known as ISO Latin1).

xmin=x1 , ymin=y1 , xmax=x2 , ymax=y2
Bounding rectangle of data to fetch. Data outside this rectangle
is not fetched. Setting bounding rectangle to same values as world
coordinate values in worlds command improves performance.

textfile Reads from delimited text file or URL name, with one record per
line. Fields in fetched record are assigned to variables $1, $2, $3,
. . . and the whole record is assigned to variable $0. If name is -
then standard input is read. If name has suffix .gz or .zip then
it is automatically decompressed as it is read.

Extras:
comment=string

Character string at start of a line marking a comment line that is
to be ignored. Default value is a hash character (#).

delimiter=character

Character separating fields in the text file. Default value is all
whitespace characters.

encoding=charset

Character set encoding of file. Common character set encodings
are UTF-8 (Unicode) and ISO-8859-1 (also known as ISO Latin1).

Table 5: Dataset Formats

5.5.15 draw

draw x , y , ...

130

Adds one or more straight line segments to the current path. A straight line
segment is added from the previously defined point to (x, y) and then to each
further point given. Points are first transformed through any world coordinate
transformation set with a worlds command then scaled and rotated by scale

and rotate values.

5.5.16 ellipse

ellipse xCenter , yCenter , xRadius , yRadius

Adds an ellipse to the current path, with center point (xCenter, yCenter).
The radius of the ellipse in the horizontal direction is xRadius and in the vertical
direction yRadius.

The center point and radius values are transformed through any transfor-
mation set with a worlds command, then scaled and rotated by scale and rotate

values.

5.5.17 endpage

endpage

Closes output file created with newpage command.

5.5.18 eps

eps filename [, size]

Displays an Encapsulated PostScript file at each move point in the current
path. The file is centered at each point.

Encapsulated PostScript files can only be displayed when creating PostScript
or Encapsulated PostScript output. For other formats, a grey box is drawn
showing where the Encapsulated PostScript file would be drawn.

filename is the name of an Encapsulated PostScript file.
size is the optional size for the Encapsulated PostScript file in millimeters.

If no size is given or size is zero then the file is displayed at its natural size,
as defined in the Encapsulated PostScript file. The file is scaled and rotated
according to the current scale and rotate settings.

5.5.19 eval

eval command

Evaluates any variables in command and then runs the result as a new com-
mand. This command is identical to the eval command found in UNIX scripting
and Perl and enables commands to be built and executed while Mapyrus runs.

5.5.20 eventscript

eventscript tags ...

131

This command is used in combination with the imagemap option of the
newpage command to create an HTML imagemap.

This command creates an entry in the imagemap with the given HTML tags
for the area covered by the current path. Useful HTML tags include hyperlinks
and callbacks for mouse events. Example HTML tags are:

href="australia.html"

onMouseClicked="return alert('Message!');"

To create an imagemap entry for a single point, first use the box command
to define a box a few pixels in size around the point.

To create an imagemap entry for a line, first create a polygon around the
line using the buffer function.

See section 4.47 for an example displaying tooltips as the mouse is moved
over an image.

5.5.21 fetch

fetch

Fetches next record from current dataset. For each field in the record, a
variable is defined with the name of the field and the value of the field for the
next record. Before fetching a record, check the variable Mapyrus.fetch.more

to ensure that another record is available from the dataset.

5.5.22 fill

fill [xml-attributes]

Flood fills the current path with the current color. The winding rule is used
for determining the inside and outside regions of polygons containing islands.
The current path is not modified by this command.

For SVG output, any XML attributes given in xml-attributes are included
in the <path> XML element for the filled path.

5.5.23 flowlabel

flowlabel spacing , offset [,extras], string [, string ...]

Draws a label following the current path, using the font set with the font

command. string values are separated by spaces. offset is the distance along
the path at which to begin the label, given in millimeters. spacing is the spacing
distance between each letter, given in millimeters. extras defines whether labels
that would appear upside down on the page are rotated 180 degrees so as to be
readable. By default, labels are rotated. If extras contains rotate=false then
labels are not rotated.

132

5.5.24 font

font name , size [, extras ...]

Sets font for labelling with the label command. Font name and size are
the name and size in millimeters of the font to use.

If a scale factor was set with the scale command then font size is scaled by
this factor.

If a rotation was set with the rotate command then labels follow current
rotation angle. If no rotation is set then labels are displayed horizontally.

Font name depends on the output format set with the newpage command.
For PostScript output, name is the name of a PostScript Type 1 font. For
output to an image format, name is one of the Java Logical font names (Serif,
SansSerif, Monospaced, Dialog, or DialogInput) or a TrueType font name.

Tutorial Sections 4.39, 4.42 and 4.43 describe different font formats.
extras defines further options for the font, given as variable=value values,

separated by whitespace. See Table 6 for available options.

Extra Description

outlinewidth=width Sets line width to use for drawing outline of
each letter in label. Only the outline of each
letter is drawn, no part of the letter is filled.

linespacing=spacing Sets spacing between lines for labels with mul-
tiple lines. Line spacing is given as a multiple
of the font size. The default line spacing is 1.

Table 6: Font Extras

5.5.25 geoimage

geoimage filename [, extras]

geoimage url [, extras]

geoimage WebMapServiceUrl [, extras]

Displays a geo-referenced image.
filename or url is the name of a BMP, GIF, JPEG, PNG, PPM or XBM

format image file. An associated ”worlds” file with suffix .tfw must exist,
defining the world coordinate range covered by the image. The extras option
readerclass enables additional image formats to be read using external Java
classes.

webMapServiceUrl is a URL request to an OGC Web Mapping Service
(WMS) for an image. The request type must be GetMap. The world coordinate
range for the image is parsed from the BBOX parameter in the URL. See the
Web Map Service Implementation specification at http://www.opengis.org

for details of all parameters that must be included in the URL.
extras defines further options for the image, given as variable=value values,

separated by whitespace. See Table 7 for available options.
Images cannot be displayed when creating SVG format output.
For PDF format output, large output images are saved as temporary files in

the Java temporary directory (see Table 1 on page 113) until output is complete.

133

Extra Description

clipfile=filename Gives name of a text file containing a clip poly-
gon for the image. Each line of the text file
defines one (X, Y) world coordinate of the clip
polygon. Only image data inside the clip poly-
gon is displayed. Using a clip polygon prevents
display of a non-rectangular image from over-
writing a neighbouring image.

hue=factor saturation=factor brightness=factor Defines a hue, saturation or brightness multi-
plication factor for the image.

readerclass=classname Gives the name of a Java class to read the
image and the world coordinate range covered
by the image. The Java class must be included
in the Java classpath and must contain the
following methods:

� constructor(String filename,

String extras)

� java.awt.image.BufferedImage

read()

� java.awt.geom.Rectangle2D

getBounds()

The methods may throw any type of Java ex-
ception on error. This option enables Mapyrus
to be extended to read additional image for-
mats.

Table 7: Geo-referenced Image Extras

5.5.26 gradientfill

gradientfill color1 , color2 , color3 , color4 [, color5 ...]

Fills the current path with a gradient fill pattern. Color names color1, color2,
color3 and color4 define the color for the lower-left corner, lower-right corner,
upper-left corner and upper-right corner of the polygon.

If color5 is given then it defines an additional color at the the center of the
polygon.

Colors in the interior of the polygon fade from the color defined in each
corner to the colors in the other corners.

The winding rule is used for determining the inside and outside regions of
polygons containing islands. The current path and current color are not modified
by this command.

For SVG output only gradient fill patterns that fade in one dimension (ver-
tically or horizontally) are possible. This is a limitation of the SVG format.

5.5.27 guillotine

guillotine x1 , y1 , x2 , y2

134

Cuts path against a rectangle. Any part of the path inside or on the bound-
ary of the rectangle remains. Any part of the path outside the rectangle is
removed. The points (x1, y1) and (x2, y2) define any two opposite corners of
the rectangle to cut against.

The four corner points of the rectangle are first transformed through any
world coordinate transformation set with a worlds command, then scaled and
rotated by scale and rotate values.

The path is always cut against a rectangle aligned with the X and Y axes of
the page, regardless of any rotation angle.

5.5.28 hexagon

hexagon xCenter , yCenter , radius

Adds a hexagon shape to the current path, with center point (xCenter,
yCenter) and distance radius from the center point to each vertex.

The center point and radius are transformed through any transformation set
with a worlds command, then scaled and rotated by scale and rotate values.

5.5.29 httpresponse

httpresponse header

Sets the complete header to return from an HTTP request when Mapyrus
is running as an HTTP server. The header must include at least two lines
containing an HTTP server response code and a MIME content type. See section
4.48 for example HTTP headers.

5.5.30 icon

icon filename , [, size]

icon "binarydigits " [, size]

icon "0xhexdigits " [, size]

icon "resource:resourcename " [, size]

Displays an image icon at each move point in the current path. The icon is
centered at each point.

filename is a the name of a file, URL or Java resource containing the icon.
The icon must be either BMP, GIF, JPEG, PAT14, PNG, PPM or XBM image format.

binarydigits are 16, 64 or 256 binary digits (all 0’s and 1’s) defining a square
single color bitmap of size 4x4, 8x8 or 16x16 pixels. Any other characters in the
string are ignored.

hexdigits are 4, 16 or 64 hexadecimal digits defining a square single color
bitmap image of size 4x4, 8x8 or 16x16 pixels. Any non-hexadecimal characters
in the string are ignored.

resourcename is the name of the Java resource containing the image, in the
form au/com/company/filename.png. This option enables images from a Java
JAR file included in the in the -classpath startup option to be displayed.

size is the optional size for the icon in millimeters. If no size is given or size
is zero then the icon is displayed at its natural size, as it would appear in an

14The Gimp pattern file format

135

image viewer with one image pixel per display pixel. The image is scaled and
rotated according to the current scale and rotate settings.

In PostScript and PDF files, icons with more than one color are displayed
with an opaque white background. This is a limitation of PostScript and PDF
output.

Icon images are loaded into memory. Loading very large images will use
a large amount of memory. Page 112 describes how to make more memory
available for Mapyrus.

Icons cannot be displayed when creating SVG format output.

5.5.31 justify

justify justification

Sets justification for labelling with the label command. justification is a
string containing either left, right, center for justifying labels horizontally
and/or top, middle, bottom for justifying labels vertically.

5.5.32 key

key type , description , [arg1 , arg2 ...]

Defines an entry for a legend. The procedure containing this command will
be called with arguments arg1, arg2 ... to display a sample of the symbol when
a legend is generated with a legend command. This command is ignored if used
outside of a procedure.

If description contains the string (#) then it will be replaced in a legend by
the number of times that the legend entry is defined.

type is either point to display the legend entry as a single point, line to
display the legend entry as a horizontal line, zigzag to display the legend entry
as a zig-zag line, or box to display the legend as a box. description is the label
for the legend entry.

If a procedure displays more than one type of type of symbol depending on
the arguments passed to it then use a separate key command for each, with
different descriptions and different arguments.

5.5.33 label

label string [, string ...]

Draws a label at each point in the path set with the move command, using
the font, justification and rotation set with the font, justify and rotate

commands. string values are separated by spaces. If string contains newline
characters (\n) then labels are displayed as multiple lines, one below the other.

5.5.34 legend

legend size

Displays legend entries defined with key commands at points defined with
move commands.

136

Each legend entry corresponds to a procedure and a set of arguments. The
first legend entry is displayed at the first move point by calling the procedure
in which the first legend entry was defined. Then the second legend entry is
displayed at the second move point. This continues until either all legend entries
are displayed or all move points are used.

The variable Mapyrus.key.count contains the number of legend entries that
remain to be displayed.

If there are more legend entries than move points then some legend entries
remain undisplayed and will be displayed in the next legend.

Legend entries are displayed in the order in which they are encountered in
called procedures.

Legend entries in procedures that were never called are not included in the
legend. Therefore, the legend only shows entries that were actually displayed.

size defines the size of each legend entry, in millimeters.
The description label is displayed to the right of each legend entry, using the

current color, font and justify settings.

5.5.35 let

let var = expression , ...

Assigns result of evaluating expression to a variable with name var. The
variable is globally accessible unless defined as local to the current procedure
with a local command.

Variable var is either a simple variable name, an array, or an array element
of the form var [index].

Several variables are assigned by separating each var and expression pair by
a comma.

5.5.36 linestyle

linestyle width

linestyle width , cap , join

linestyle width , cap , join , phase , dash length , ...

Sets style line drawing by the stroke command. Line width given in millime-
ters. cap is the style to use at the ends of lines, either butt, round or square.
join is the style to use where lines join, either bevel, miter or round. One or
more dash length values are given, alternating between the length of one dash
and the length of space between dashes in a dash pattern. Each dash length is
given in millimeters. phase is the offset in millimeters into the dash pattern at
which to begin.

5.5.37 local

local name , [name ...]

Declares the listed variable names as local to a procedure. The variables are
not visible outside the enclosing procedure and their values are lost when the
procedure ends.

137

5.5.38 logspiral

logspiral xCenter , yCenter , a , b , revolutions , startAngle

Adds a logarithmic spiral to the current path, with center point (xCenter,
yCenter). The values a and b are used in the polar coordinates formula r = ae

bθ

to generate the spiral points.
revolutions defines the number of loops of the spiral. If revolutions is a posi-

tive number then the spiral is drawn in a anti-clockwise direction. If revolutions
is a negative number then the spiral is drawn in an clockwise direction.

startAngle defines the angle at which the inner revolution of the spiral starts.
The center point and start angle are transformed through any transformation

set with a worlds command, then scaled and rotated by scale and rotate values.

5.5.39 mimetype

mimetype type

Sets MIME type for content being returned from HTTP request when Mapyrus
is running as an HTTP server. A more general solution is to use the httpresponse
command to set the complete header returned from the HTTP request.

5.5.40 move

move x , y

Adds the point (x, y) to the current path. The point is first transformed
through any world coordinate transformation set with a worlds command, then
scaled and rotated by scale and rotate values.

5.5.41 newpage

newpage format , filename , width , height , extras

newpage format , filename , paper , extras

Begins output of a new page to a file. Any previous output is closed. The
path, clipping path and world coordinates are cleared. The origin of the new
page is in the lower-left corner. format is the file format to use for output, one
of:

� eps for Encapsulated PostScript output, with shapes and labels defined
geometrically.

� ps, postscript or application/postscript for PostScript output, with
shapes and labels defined geometrically.

� pdf or application/pdf for Portable Document Format output.

� screen to display output in a window on the screen.

� bmp or image/bmp for BMP image output.

� jpeg or image/jpeg for JPEG image output.

138

� png or image/png for PNG image output.

� ppm or image/x-portable-pixmap for Netpbm PPM image output.

� epsimage for Encapsulated PostScript image output. Output contains a
single image in which all shapes and labels have been drawn.

� svg or image/svg+xml for Scalable Vector Graphics (SVG) output.

paper is a paper size name for the page. Alternatively, width and height are
the dimensions of the page in millimeters, or as values such as 256px or 11in
including the units.

filename is the name of the file to write the page to. If filename is a dash
(-) then the page is written to standard output. If filename begins with a pipe
(|) then the rest of filename is interpreted as an operating system command.
The operating system command is executed and Mapyrus writes the page to
the standard input of the executing operating system command.

extras defines further options for the new page, given as variable=value val-
ues, separated by whitespace. See Table 8 for options available for each type of
output.

139

Table 8: Output Formats

140

File Format Extras

File Format Extras

PostScript, Encapsulated
PostScript

background=color

Background color for page, as a named color, hex digits or CMYK
values in parentheses.

afmfiles=filename,filename2,...

Comma-separated list of PostScript Type 1 font metrics filenames
to include in this PostScript file. PostScript Type 1 font metrics
are defined in a file with suffix .afm. Include files for all PostScript
fonts to be used in this page that are not known by the printer.
See section 4.39 for information on converting TrueType fonts to
PostScript Type 1 format.

pfafiles=filename,filename2,...

Comma-separated list of ASCII PostScript Type 1 font definition
filenames to include in this PostScript file. An ASCII PostScript
Type 1 font definition is defined in a file with suffix .pfa. Include
files for all PostScript fonts to be used in this page that are not
known by the printer.
See section 4.39 for information on converting TrueType fonts to
ASCII PostScript Type 1 format.

isolatinfonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
ISO Latin1 character encoding (also known as ISO-8859-1 encod-
ing) is required. Use ISO Latin1 encoding when extended charac-
ters such as accented characters or a copyright symbol are to be
displayed from the font.

glyphfile=filename

Name of file replacing default Adobe Glyph List file
glyphlist.txt that is included in Mapyrus. This file defines
glyph names in PostScript fonts for all characters.

minimumlinewidth=value

Sets a minimum line width. Thinner lines will be changed to this
width. This avoids very thin lines which appear differently in
different output formats.

resolution=value

Resolution for page, given as a dots-per-inch value. Replaces de-
fault value of 300.

turnpage=flag

If flag is true then turns a landscape orientation page 90 degrees
so that it appears as a portrait page.

update=flag

If flag is true then the file with name filename is an existing
PostScript file that is opened for editing. The existing file must
be an Encapsulated PostScript file or a PostScript file containing
only a single page. Drawing commands will draw over the top of
the existing page. Page size is set to the size of the existing page,
width and height of the new page are ignored.

Table 8: Output Formats

141

File Format Extras

PDF afmfiles=filename,filename2,...

Comma-separated list of PostScript Type 1 font metrics filenames
to include in this PDF file. PostScript Type 1 font metrics are
defined in a file with suffix .afm. Include files for all PostScript
fonts to be used in this page that are not one of the 14 standard
PDF fonts.
See section 4.40 for information on converting TrueType fonts to
binary PostScript Type 1 format.

pfbfiles=filename,filename2,...

Comma-separated list of binary PostScript Type 1 font definition
filenames to include in this PDF file. A binary PostScript Type
1 font definition is defined in a file with suffix .pfb. Include files
for all PostScript fonts to be used in this page that are not one of
the 14 standard PDF fonts.
See section 4.40 for information on converting TrueType fonts to
binary PostScript Type 1 format.

isolatinfonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
ISO Latin1 character encoding (also known as ISO-8859-1 encod-
ing) is required. Use ISO Latin1 encoding when extended charac-
ters such as accented characters or a copyright symbol are to be
displayed from the font.

isolatin2fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
ISO Latin2 character encoding (also known as ISO-8859-2 encod-
ing) is required. ISO Latin2 fonts contain characters used in Cen-
tral European languages.

isolatin9fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
ISO Latin9 character encoding (also known as ISO-8859-15 en-
coding) is required.

isolatin10fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
ISO Latin10 character encoding (also known as ISO-8859-16 en-
coding) is required.

glyphfile=filename

Name of file replacing default Adobe Glyph List file
glyphlist.txt that is included in Mapyrus. This file defines
glyph names in PostScript fonts for all characters.

Table 8: Output Formats

142

File Format Extras

PDF otffiles=filename,filename2,...

Comma-separated list of OpenType font filenames to include in
this PDF file. An OpenType font file has suffix .otf.

background=color

Background color for page, as a named color, hex digits or CMYK
values in parentheses.

maximumimagememory=value

Sets the maximum amount of memory in megabytes to use for
holding PDF image output. If images in PDF output exceed this
limit then further images are stored in temporary files until PDF
output is complete and the PDF output file is saved. By default,
a maximum of 16MB of memory is used.

minimumlinewidth=value

Sets a minimum line width. Thinner lines will be changed to this
width. This avoids very thin lines which appear differently in
different output formats.

resolution=value

Resolution for page, given as a dots-per-inch value. Replaces de-
fault value of 72.

turnpage=flag

If flag is true then turns a landscape orientation page 90 degrees
so that it appears as a portrait page.

windows1250fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
Windows 1250 character encoding is required.

windows1251fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
Windows 1251 character encoding is required.

windows1252fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
Windows 1252 character encoding is required.

windows1253fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
Windows 1253 character encoding is required.

windows1254fonts=fontname,fontname2,...

Comma-separated list of PostScript Type 1 font names for which
Windows 1254 character encoding is required.

Table 8: Output Formats

143

File Format Extras

Scalable Vector Graphics
(SVG)

background=color

Background color for page, as a named color, hex digits or CMYK
values in parentheses.

compress=flag

If flag is true then output is compressed with GZIP compression.

minimumlinewidth=value

Sets a minimum line width. Thinner lines will be changed to this
width. This avoids very thin lines which appear differently in
different output formats.

resolution=value

Resolution for page, given as a dots-per-inch value. Replaces de-
fault value of screen resolution.

scriptfile=filename

Name of file containing an XML <script> ...</script> element
to add to SVG file.

Table 8: Output Formats

144

File Format Extras

BMP, JPEG, PNG, PPM
images, output to a win-
dow on screen and Encap-
sulated PostScript images

background=color

Background color for image, as a named color, hex digits or
CMYK values in parentheses.

fractionalfontmetrics=flag

If flag is true then slower, more accurate calculations are made
for positioning letters in labels. Fractional font metrics are not
used by default.

imagemap=filename

Creates a file containing an HTML imagemap for the image. An
HTML imagemap contains hyperlinks to jump to and JavaScript
functions to execute when the mouse is moved or clicked over
the image. Entries in the imagemap are defined using the
eventscript command.
A completed imagemap file is surrounded by an HTML <map> tag
and included in an HTML file.

labelantialiasing=flag

If flag is true then labels are drawn with anti-aliasing, improving
readability. Labels are drawn with anti-aliasing by default.

lineantialiasing=flag

If flag is true then lines are drawn with anti-aliasing. Lines are
not drawn with anti-aliasing by default.

minimumlinewidth=value

Sets a minimum line width. Thinner lines will be changed to this
width. This avoids very thin lines which appear differently in
different output formats.

resolution=value

Resolution for page, given as a dots-per-inch value. Replaces de-
fault value of screen resolution.

ttffiles=filename,filename2,...

Comma-separated list of TrueType font filenames to load for this
page. A TrueType font is defined in a file with suffix .ttf.
Do not use this option on operating systems that support True-
Type fonts (Windows, Mac). All TrueType fonts are already avail-
able from the operating system.
On operating systems that do not support TrueType fonts (Linux,
UNIX) include filenames of all TrueType fonts to be used on this
page. These fonts are loaded by Mapyrus.

update=flag

If flag is true then the file with name filename is an existing file
that is opened for editing. Drawing commands will draw over the
top of the existing image in the file. Page size is set to the size of
the existing image, width and height of the new page are ignored.

Table 8: Output Formats

145

File Format Extras

Table 8: Output Formats

5.5.42 parallelpath

parallelpath distance [, distance ...]

Replaces current path with new paths parallel to current path. For each
given distance, a new path is created at distance millimeters to the right of
current path. If a distance is negative then path is created to the left of the
current path.

When used on complex paths with sharp angles, this command creates paths
that self-intersect.

5.5.43 pdf

pdf filename , page [, size]

Displays a Portable Document Format (PDF) file at each move point in the
current path.

filename is the name of a PDF file. page is the page number from the PDF
file to display.

size is the optional size for the PDF file in millimeters. If no size is given or
size is zero then the file is displayed at its natural size, as defined in the PDF
file. The file is scaled and rotated according to the current scale and rotate

settings.
PDF files can only be displayed when creating PDF output. For other for-

mats, a grey box is drawn showing where the PDF file would be drawn.

5.5.44 pdfgroup

pdfgroup action [, groupName]

Controls creation of groups in PDF output files (known as Optional Content

Groups in PDF terminology).
A PDF viewer such as Acrobat Reader enables each group in a PDF file to

be turned on and off independently of other groups.
The action begin and a group name begins a group. All following output

until the matching end action is included in the group.
The action end completes a group. Any open groups are automatically ended

when a PDF output file is finished.
Nesting of groups is permitted.
For formats other than PDF, this command has no effect.

5.5.45 pentagon

pentagon xCenter , yCenter , radius

Adds a pentagon shape to the current path, with center point (xCenter,
yCenter) and distance radius from the center point to each vertex.

The center point and radius are transformed through any transformation set
with a worlds command, then scaled and rotated by scale and rotate values.

146

5.5.46 print

print string [, string ...]

Prints each string to standard output, separated by spaces. A newline is
added after the final string.

Standard output is redirected to a different file or destination using the
setoutput command.

5.5.47 protect

protect x1 , y1 , x2 , y2

protect geometry

protect

Marks a region of the page as protected. The function protected will then
return 1 for any point in this region.

The points (x1, y1) and (x2, y2) define any two opposite corners of the
rectangle to mark as protected.

If geometry containing a polygon is given, then the region covered by that
polygon is protected.

If no arguments are given then the region inside the current path is protected.
The rectangle or geometry is first transformed through any world coordinate

transformation set with a worlds command, then scaled and rotated by scale

and rotate values.

5.5.48 raindrop

raindrop xCenter , yCenter , radius

Adds a raindrop shape to the current path, with center point (xCenter,
yCenter) and radius radius.

The center point and radius are transformed through any transformation set
with a worlds command, then scaled and rotated by scale and rotate values.

5.5.49 reversepath

reversepath

Reverses the direction of the current path.

5.5.50 rotate

rotate angle

Rotates the coordinate system, adding to any existing rotation. angle is
given in degrees, measured counter-clockwise. All later coordinates given in
move, draw, arc and addpath commands are rotated by this angle.

147

5.5.51 rdraw

rdraw dx , dy , ...

Adds one or more straight line segments to the current path using relative
distances. A straight line segment is added from the previously defined point
a relative distance (dx, dy). Each further point adds a line segment relative
to the point before. Points are first transformed through any world coordinate
transformation set with a worlds command then scaled and rotated by scale

and rotate values.

5.5.52 roundedbox

roundedbox x1 , y1 , x2 , y2

roundedbox x1 , y1 , x2 , y2 , radius

Adds a rectangle with rounded corners to the current path. The points (x1,
y1) and (x2, y2) define any two opposite corners of the rectangle.

The radius of circular arcs at the rounded corners is radius, or 10% of the
size of the rectangle if not given.

The points and radius are transformed through any transformation set with
a worlds command, then scaled and rotated by scale and rotate values.

5.5.53 samplepath

samplepath spacing , offset

Replaces current path with equally spaced points along the path. offset is
the distance along the path at which to place first point, given in millimeters.
spacing is the distance between points, given in millimeters. The sign of spacing
controls the direction in which the path is travelled. If spacing is a positive value,
the path is travelled from the beginning towards the end. If spacing is a negative
value, then the absolute value of spacing is used and the path is travelled from
the end towards the beginning. Using a very large positive or negative value for
spacing results in current path being replaced by a single point at the beginning
or end of the path.

5.5.54 scale

scale factor

Scales the coordinate system, adding to any existing scaling. factor is scale
factor for X and Y axes. All later coordinates given in move, draw, arc and
addpath commands are scaled by this factor.

5.5.55 selectpath

selectpath offset , length [, offset , length ...]

Selects one or more parts of the current path.
Each offset is a distance along the path at which to begin selecting the path,

measured in millimeters. length is the length of path to select at that offset,
measured in millimeters.

148

Offsets and lengths are scaled by scale values but are independent of any
world coordinate transformation.

5.5.56 setoutput

setoutput filename

Sets file that all print commands will be written to. filename is the name
of a file to write to, overwriting any existing file with this name.

5.5.57 shiftpath

shiftpath x , y

Shifts all points in the current path x millimeters along the X axis and y

millimeters along the Y axis. Shift values are scaled and rotated by scale and
rotate values but are independent of any world coordinate transformation.

Use this command repeatedly following a clip "outside" command to pro-
duce a shadow effect for polygons, as shown in Section 4.26 on page 75.

5.5.58 sinewave

sinewave xEnd , yEnd , repeats , height

Adds a a sine wave curve to the current path. The curve begins at the last
point added to the path and ends at (xEnd, yEnd)

The sine wave is repeated repeats number of times.
height defines the height of the sine wave. If height is a negative number

then a mirror image of the sine wave is produced.
The end point and height are transformed through any transformation set

with a worlds command, then scaled and rotated by scale and rotate values.

5.5.59 sinkhole

sinkhole

Replaces the current path containing a polygon with a single point in the
middle of the polygon, farthest from the polygon perimeter.

5.5.60 spiral

spiral xCenter , yCenter , radius , revolutions , startAngle

Adds a spiral to the current path, with center point (xCenter, yCenter) and
given outer radius.

revolutions defines the number of loops of the spiral. If revolutions is a posi-
tive number then the spiral is drawn in an anti-clockwise direction. If revolutions
is a negative number then the spiral is drawn in a clockwise direction.

startAngle defines the angle at which the outer revolution of the spiral starts.
The center point, radius and start angle are transformed through any trans-

formation set with a worlds command, then scaled and rotated by scale and
rotate values.

149

5.5.61 star

star xCenter , yCenter , radius , points

Adds a star shape to the current path, with center point (xCenter, yCenter),
distance radius from the center to each point of the star. points is the number
of points for the star.

The center point and radius are transformed through any transformation set
with a worlds command, then scaled and rotated by scale and rotate values.

5.5.62 stripepath

stripepath spacing , angle

Replaces current path with equally spaced parallel lines that completely
cover the path. spacing is the distance between lines, measured in millimeters.
angle is angle of each line, measured counter-clockwise in degrees, with zero
being horizontal. Follow this command with a clip command to produce a
hatched fill pattern.

5.5.63 stroke

stroke [xml-attributes]

Draws the current path using the current color and linestyle. The current
path is not modified by this command.

For SVG output, any XML attributes given in xml-attributes are included
in the <path> XML element for the drawn path.

5.5.64 svg

svg filename , [, size]

Displays a Scalable Vector Graphics (SVG) file at each move point in the
current path.

filename is the name of an SVG file, with either an .svg or .svgz suffix.
size is the optional size for the SVG file in millimeters. If no size is given or

size is zero then the file is displayed at its natural size, as defined in the SVG
file. The file is scaled and rotated according to the current scale and rotate

settings.
SVG files can only be displayed when creating SVG output. For other for-

mats, a grey box is drawn showing where the SVG file would be drawn.

5.5.65 svgcode

svgcode xml

Adds XML code to the output file.
XML code can only be added to Scalable Vector Graphics (SVG) files.
This enables the default Mapyrus settings in SVG files to be overridden and

for graphics to be grouped together as layers.

150

5.5.66 table

table extras , column1 , column2 ...

Draws a table at each point in the path set with the move command, One
or more arrays are given defining values for each column of the table. Values in
each column array are displayed as one column in the table.

Labels in the table are drawn using the current color and font settings.
extras defines further options for the table, given as variable=value values,

separated by whitespace. See Table 9 for available options.

Extra Description

background=colors Comma-separated list of colors to use as back-
ground for entries in the table, as named col-
ors, hex digits or CMYK values in parenthe-
ses. The colors are used in turn for each col-
umn in each row. When the end of the list is
reached, the list is repeated. By default the
background is not displayed.

borders=flag If flag is true then a border is drawn around
each entry in the table using the current
linestyle and color. By default borders are
drawn.

justify=justifications A comma-separated list of horizontal justifica-
tion values for each column in the table. Each
justification is one of left, right or center.

sortcolumn=index Index of column to sort on, with first column
having index 1. Values in given column are
sorted and all columns are displayed in the
order of the sorted column. By default values
are not sorted.

sortorder=order Ordering for sort column. Either asc for as-
cending order, or desc for descending order.
Default is ascending order.

Table 9: Table Extras

5.5.67 tree

tree extras , entries

Draws a tree of labels at each point in the path set with the move command.
An array is given defining tree entries. Each entry is split using the delimiter.
An entry starting with the same values as a previous entry is indented to the
right with an arrow linking it to the previous entry.

Labels are drawn using the current color and font settings.
extras defines further options for the tree, given as variable=value values,

separated by whitespace. See Table 10 for available options.

151

Extra Description

delimiter=string Delimiter used to determine indentation of la-
bels. By default whitespace is used as the de-
limiter.

Table 10: Tree Extras

5.5.68 triangle

triangle xCenter , yCenter , radius , rotation

Adds an equilateral triangle to the current path, with center point (xCenter,
yCenter) and distance radius from the center point to each vertex.

The triangle is rotated clockwise rotation degrees.
The center point, radius and rotation are transformed through any transfor-

mation set with a worlds command, then scaled and rotated by scale and rotate

values.

5.5.69 unprotect

unprotect x1 , y1 , x2 , y2

unprotect geometry

unprotect

Clears all protected regions from an area on the page.
The points (x1, y1) and (x2, y2) define any two opposite corners of the

rectangle to clear.
If geometry containing a polygon is given then the region inside that polygon

is cleared.
If no arguments are given then the region inside the current path is cleared.
The rectangle or geometry is first transformed through any world coordinate

transformation set with a worlds command, then scaled and rotated by scale

and rotate values.

5.5.70 wedge

wedge xCenter , yCenter , radius , angle , sweep [, height]

Adds a wedge (pie slice) shape to the current path, with center point (xCen-
ter, yCenter) and radius radius. The wedge begins at angle angle measured
counter-clockwise in degrees, with zero being horizontal. The wedge is open
sweep degrees in a counter-clockwise direction. If sweep is negative then the
wedge opens in a clockwise direction.

If height is given then the wedge is extended downwards by this value to
produce 3 dimensional effect.

The center point, radius and height are transformed through any transfor-
mation set with a worlds command, then scaled and rotated by scale and rotate

values.

152

5.5.71 worlds

worlds wx1 , wy1 , wx2 , wy2 [, extras]

worlds wx1 , wy1 , wx2 , wy2 , px1 , py1 , px2 , py2 [, extras]

worlds wx1,wy1,wx2,wy2 [, extras]

Defines a world coordinate system for the page.
The coordinates (wx1, wy1) and (wx2, wy2) define the lower-left and upper-

right world coordinate values.
The coordinates (px1, py1) and (px2, py2) define the lower-left and upper-

right positions on the page in millimetres. The world coordinates are mapped
into this area of the page. If page coordinates are not given then the world
coordinates are mapped to the whole page.

The new world coordinates replace any world coordinates set with a previous
worlds command.

A single comma-separated string with world coordinate values is also ac-
cepted, as passed in the BBOX URL parameter in a OGC Web Mapping Service
(WMS) request.

extras defines further options, given as variable=value values, separated by
whitespace. See Table 11 for available options.

Extra Description

units=units Defines the units of the world coordinates, ei-
ther metres, meters or feet. If not given,
units are assumed to be meters.

distortion=flag If true then non-uniform scaling in X and Y
axes is allowed. If false then the world co-
ordinate range is expanded, if necessary, to
maintain uniform scaling. If not given, then
scaling is uniform.

Table 11: Worlds Extras

5.6 Error Handling

If Mapyrus encounters an error when interpreting commands, an error message
is printed including the filename and line number at which the error occurred
and Mapyrus exits immediately. The Java interpreter exits with a non-zero
status.

If an error occurs when using the HTTP Server option, an HTTP failure
status and the error message are returned to the HTTP client. The HTTP
server continues, handling the next request.

5.7 Mapyrus HTTP Server

Mapyrus runs as an HTTP server when started with the -s command line
option.

The HTTP server accepts and replies to requests from HTTP clients on the
given port number. If port number is 0 then any free port number is used. The
port number used is written to the log file or to standard output.

153

The HTTP server is multi-threaded to enable several requests to be handled
simultaneously. If the HTTP server receives an HTTP request for a file with a
suffix matching a well-known MIME type (such as html, txt, ps, pdf, svg, zip
or a web image format), then the contents of that file are returned by the HTTP
server to the HTTP client. Requests for files with no suffix, or with unknown file
suffix such as .mapyrus are interpreted by Mapyrus using the following steps.

1. Set any parameters passed in the URL (following the ? character in the
URL or passed in an HTML form) as variables in Mapyrus. Variable
names are converted to uppercase.

2. Read and execute the commands from the filename given in the URL.

3. Capture the standard output of these commands and return it to the
HTTP client. An image file is returned if the newpage command is used
with output file set to standard output. Otherwise the output of any
print commands is returned. The HTTP header information set in a
mimetype or httpresponse command is returned to the HTTP client.

An HTTP error state is returned if the request fails.

Requests using either GET or POST methods are accepted by Mapyrus.
The HTTP server runs forever and is stateless. Each HTTP request is

independent and variables, graphics state and legend entries are not shared
between requests. Any files or URLs given on the command line when Mapyrus
is started are interpreted before accepting HTTP requests. Procedures defined
in these files are available when interpreting HTTP requests. This enables
common procedures to be loaded only once at startup and not with every HTTP
request.

Files are not cached and are read for each HTTP request.
For security, the HTTP server only replies to requests from the directory

in which Mapyrus was started and its subdirectories. Requests for files from
other directories return an error to the HTTP client. If communication between
HTTP client and Mapyrus is blocked for longer than 5 minutes then the HTTP
request is cancelled. When all threads in the HTTP server are busy handling
requests, further requests are queued.

Logging of HTTP requests is controlled by the -l command line option.

5.8 Mapyrus Servlet

The file mapyrus.war provided with Mapyrus is a web application archive.
After being deployed in a web server, the Mapyrus servlet handles HTTP

requests to the following URL.

http://localhost:8080/mapyrus/servlet

An example web page with an HTML form for the user to enter Mapyrus
commands, submit them to the Mapyrus servlet and obtain the output is pro-
vided at the following URL.

http://localhost:8080/mapyrus

154

The commands to be run by Mapyrus servlet are passed in the URL param-
eter commands in the HTTP request.

Any other parameters passed in the URL (following the ? character in the
URL or passed in an HTML form) are set as variables in Mapyrus. Variable
names are converted to uppercase.

Normally, the Mapyrus commands in the HTTP request will be generated
programmatically or entered in an HTML form. Mapyrus commands passed
programmatically must be converted to a form suitable for a URL. In Java, this
is done using methods from the Java class java.net.URLEncoder.

By default, Mapyrus servlet blocks access to files and URLs. To enable
access, set the servlet initialisation parameter io to true in the servlet configu-
ration file WEB-INF/web.xml contained in the web application file mapyrus.war.

The standard output of the Mapyrus commands is returned from the HTTP
request. A mimetype or httpresponse command must be used to define the
type of output being returned.

If a JNDI DataSource is setup in the web server to provide database con-
nection pooling then database connections from the pool are available using the
jndiname option in the dataset command.

If JTS Topology Suite functions or a JDBC driver are used then the JTS

Topology Suite or JDBC JAR file must be made available to the web server by
copying it into a directory that the web server includes in the Java classpath.

The Mapyrus servlet throws a Java ServletException if there is an error in
the Mapyrus commands, or an error running the Mapyrus commands.

155

	Introduction
	Availability
	Feedback
	Tutorial and Cookbook
	First Step
	Second Step
	Using Variables
	Building Procedures
	Displaying Lines
	Displaying Polygons
	Displaying Labels
	Displaying Data Stored In Text Files
	Displaying Data Stored In Shape Files
	Displaying Mapyrus World Map
	Displaying OpenStreetMap Data
	Displaying Data Stored In A Database
	Displaying Geo-Referenced Images
	Displaying Images From An OGC Web Mapping Service
	Displaying Datasets and Images Stored In JAR Files
	Displaying Many Datasets or Geo-Referenced Images
	Updating Existing Output Files
	Display Performance
	Displaying A Legend
	Using Attributes To Control Display
	Displaying A Scalebar
	Displaying Piecharts And Histograms
	Random Effects
	Using Transparency
	Color For Printing
	Shadow Effects
	Displaying Tables
	Wordwrapped Labels
	Formatting In Labels
	Avoiding Overlapping Labels
	Displaying Image Icons
	Including Encapsulated PostScript Files
	Creating Groups in PDF Output Files
	Mapyrus and JTS Topology Suite Functions
	Mapyrus and Java PROJ.4 Library
	Creating Landscape Output on Portrait Pages
	Page Layout With Mapyrus
	Creating Multiple Page Output
	Using PostScript Fonts In PostScript Output
	Using PostScript Fonts In PDF Output
	Using OpenType Fonts In PDF Output
	Using TrueType Fonts In Output to Image Formats
	Using Fonts In SVG Output
	Running Mapyrus As An HTTP Server
	Passing Variables To Mapyrus HTTP Server Through URLs
	Returning HTML Pages From Mapyrus HTTP Server
	Using JavaScript with Mapyrus HTTP Server
	Setting Expiry Dates, Cookies and Redirections from Mapyrus HTTP Server
	Returning Additional Information From Mapyrus HTTP Server
	Using Mapyrus HTTP Server With OpenLayers
	Using Mapyrus Servlet
	Using Mapyrus JSR 223 Script Engine Interface
	Using Mapyrus In A Java Or Jython Application
	Calling Java Functions From Mapyrus
	Creating SVG Files With Event Handling
	Building Mapyrus From Source
	Sample Shapes And Patterns

	Reference
	Software Requirements
	Usage
	Startup Configuration

	Language
	Internal Variables
	Commands
	addpath
	arc
	bezier
	blend
	box
	box3d
	chessboard
	circle
	clearpath
	clip
	closepath
	color
	cylinder
	dataset
	draw
	ellipse
	endpage
	eps
	eval
	eventscript
	fetch
	fill
	flowlabel
	font
	geoimage
	gradientfill
	guillotine
	hexagon
	httpresponse
	icon
	justify
	key
	label
	legend
	let
	linestyle
	local
	logspiral
	mimetype
	move
	newpage
	parallelpath
	pdf
	pdfgroup
	pentagon
	print
	protect
	raindrop
	reversepath
	rotate
	rdraw
	roundedbox
	samplepath
	scale
	selectpath
	setoutput
	shiftpath
	sinewave
	sinkhole
	spiral
	star
	stripepath
	stroke
	svg
	svgcode
	table
	tree
	triangle
	unprotect
	wedge
	worlds

	Error Handling
	Mapyrus HTTP Server
	Mapyrus Servlet

