

The OCLC Z39.50 Client API Software Library

Version 1.5

September 8, 1995

�
Table of Contents

� TOC \t "Section Heading,1" �Table of Contents	� GOTOBUTTON _Toc337273276 � PAGEREF _Toc337273276 �2��

Changes from previous versions	� GOTOBUTTON _Toc337273277 � PAGEREF _Toc337273277 �3��

High-level description	� GOTOBUTTON _Toc337273278 � PAGEREF _Toc337273278 �3��

Availability	� GOTOBUTTON _Toc337273279 � PAGEREF _Toc337273279 �4��

InitRequest()	� GOTOBUTTON _Toc337273280 � PAGEREF _Toc337273280 �5��

InitResponse()	� GOTOBUTTON _Toc337273281 � PAGEREF _Toc337273281 �6��

SearchRequest()	� GOTOBUTTON _Toc337273282 � PAGEREF _Toc337273282 �7��

SearchResponse()	� GOTOBUTTON _Toc337273283 � PAGEREF _Toc337273283 �8��

PresentRequest()	� GOTOBUTTON _Toc337273284 � PAGEREF _Toc337273284 �9��

PresentResponse()	� GOTOBUTTON _Toc337273285 � PAGEREF _Toc337273285 �10��

ScanRequest()	� GOTOBUTTON _Toc337273286 � PAGEREF _Toc337273286 �11��

ScanResponse()	� GOTOBUTTON _Toc337273287 � PAGEREF _Toc337273287 �12��

WhatKindOfResponse()	� GOTOBUTTON _Toc337273288 � PAGEREF _Toc337273288 �13��

Z3950_Response()	� GOTOBUTTON _Toc337273289 � PAGEREF _Toc337273289 �14��

IRP_Logging()	� GOTOBUTTON _Toc337273290 � PAGEREF _Toc337273290 �15��

zapi.h	� GOTOBUTTON _Toc337273291 � PAGEREF _Toc337273291 �16��

Example	� GOTOBUTTON _Toc337273292 � PAGEREF _Toc337273292 �19��

��
Changes from previous versions

A description of our fourth version of the Z39.50 Client API is below. It will, of course, undergo some refinement with use and get extended to support new Z39.50 functionality as required. The changes from the fourth version include support for type-101 queries (including proximity operators in the Client API’s query grammer) and the removal of some unneeded parameters in the request calls. Scan was brought into compliance with the final version of the ‘95 standard. In addition, a number of changes were made to simplify things and to bring the Client API into compliance with the article that was written about it. (See the section on availability at the end of this document.)

The change from the third version is the addition of support for piggybacked Presents with the SearchRequest. This means that there is now an optional PRESENT_RESPONSE structure in the SEARCH_RESPONSE structure.

The changes from the second version are the addition of support for a simple userid and password on the InitRequest; support for full boolean queries in the SearchRequest; support for both MARC and SUTRS record syntaxes in the PresentRequest. New routines to support Scan have been added. They are in an early stage of development and will definitely be enhanced with experience. Finally, a new routine, IRP_Logging(), provides support for run-time diagnostic logging.

High-level description

The routines process IRP messages, they do not send or receive these messages; that is up to the calling routines. (IRP stands for Information Retrieval Protocol, which is the name of the protocol described by Z39.50.) An IRP Request routine is called and it produces a BER (Basic Encoding Rules, the chosen transfer syntax for ASN.1) record that can be sent to a Z39.50 target. Conversely, a BER record containing an IRP response is processed and a structure is returned. The BER records are encoded and decoded using OCLC's BER utilities. These utilities are available via anonymous ftp to ftp.rsch.oclc.org and are in the pub/BER_utilities directory.

There are two layers to the IRP response routines. The layer you choose to use will depend on coding style and application complexity. The lower layer, consisting of InitResponse(), SearchResponse(), PresentResponse() and ScanResponse(), are called directly with the Z39.50 target's response to an Init, Search, Present or Scan request. These routines fill in structures with the various parameters in the response. They are appropriate when the application (the Z39.50 origin) is relatively simple and "knows" what kind of response it is receiving. This is usually a single user application.

In more complex applications, it is difficult to know what kind of response has arrived. The next layer addresses this problem. Two routines are provided; WhatKindOfResponse() and Z3950_Response(). WhatKindOfResponse() returns a value indicating what kind of IRP response has arrived. Z3950_Response() takes that one step further, by returning a structure that indicates the type of response and a then calls the appropriate response routine, returning the response routine's structure through a pointer that can be appropriately cast.

In the descriptions of the routines, I will not discuss the meaning of the various parameters to the request routines. They are fully described in the Z39.50 standard.

In all the request routines, a long referenceId is provided. The value in the referenceId is in the structure returned by the response routines. In complex applications, we have found that a useful place to put a pointer to a structure containing information about the request that has just been processed. Doing this has allowed us to build relatively stateless applications.

The BER record that is created by the request routines can be put into a buffer provided by you or allocated by the request routine. It is often convenient to have the request routines place their BER records directly into the communications buffer for transmission. If you do provide a buffer, len should be set to the length of the buffer. If the buffer is not big enough to contain the BER record, NULL will be returned and len will contain the size of buffer that the record would have required. If buffer is NULL or len is 0, then a buffer will be allocated and returned. Len will be set to the size of the allocated buffer. The allocated buffer can be freed after its contents are copied or transmitted.

A copy of zapi.h can be found at the end of this document.

Availability

An article about building Z39.50 clients, which includes a detailed description of the Client API, was written for the Z39.50 Implementors Group. It is available via anonymous ftp at the Z39.50 Maintenance Agency’s ftp site at ftp.loc.gov. You’re on your own for finding it there.

The article will also be published by the National Institute for Standards and Technology (NIST) as part of a Z39.50 monograph. Good luck finding that too.

Finally, the article is available via anonymous ftp at ftp.rsch.oclc.org in the pub/SiteSearch/z39.50_client_api directory. It is available in several formats, the names of which all begin with zclient.

The OCLC ftp site also provides the source code for the Z39.50 Client API and a simple client application (zdemo), which are in the same directory, as well as the BER utilities which are in the pub/BER_utilities directory.

�
InitRequest()

Synopsis

#include "zapi.h"

CHAR *InitRequest(long referenceId, CHAR *options,

 	long preferredMessageSize, long maximumRecordSize, CHAR *id,

	CHAR *password);

Function

Creates a Z39.50 InitRequest.

Returns

NULL if sufficient space could not be allocated. Otherwise, a pointer to the location of the constructed BER record is returned.

Notes

For now, set options to NULL. This will cause Init_Request() to ask for Search, Present and Scan functionality from the target. We'll add a routine later to build a proper options string. If anonymous access to the target is being requested, then id and password should be NULL. If they are provided, then they will be catenated together, with a separator of '/' and sent in the idAuthentication field of the InitRequest.

Example

See examples at the end of the document.

�
InitResponse()

Synopsis

#include "zapi.h"

INIT_RESPONSE *InitResponse(CHAR *response);

Function

Processes a Z39.50 InitResponse.

Returns

A pointer to an INIT_RESPONSE structure, or a NULL if unable to process the response. If NULL, a call to WhatKindOfResponse() will return a value which should indicate why InitResponse() failed.

Notes

In the INIT_RESPONSE structure is a variable named IRP_context. It must be passed to all subsequent IRP request routines when they are processing requests for the just initialized session. The variable result will be set to TRUE if the InitRequest was successful.

Some servers provide useful information in the userInformation field. If such information is provided, then the userInformation field will need to be free'd. The INIT_RESPONSE structure should be free'd as well.

Example

See examples at the end of the document.

�
SearchRequest()

Synopsis

#include "zapi.h"

CHAR *SearchRequest(long referenceId, long mediumSetPresentNumber,

	int replaceIndicator, char *resultSetName, char *databaseNames,

	char *smallSetElementSetNames, char *mediumSetElementSetNames,

	char *preferredRecordSyntax, char *query, long query_type)

Function

Creates a Z39.50 SearchRequest.

Notes

databaseNames is a string of names, separated by '\0's and terminated by two '\0's. For now, use just one database name. Only type-0 (DBI) and type-1 (described below) queries are supported.

Type-1 queries are entered as Reverse Polish Notation strings. Currently the only operators supported are AND, OR, and NOT. The USE attribute for a term can be specified by appending a '/' and then the USE attribute value as a digit string to the end of the term. (e.g. To search for dog as a subject term, use the term dog/21). A STRUCTURE attribute can be added by appending another '/' and the STRUCTURE value as a digit string. (e.g. To search for dog as a subject term with a structure of WORD, use the term dog/21/2). Terms with embedded blanks can be surrounded with double-quotes. (e.g. To search for War And Peace as a title phrase, use the term "war and peace"/4/1).

To search for documents with both dog and cat, use the query dog cat and.

Returns

NULL if sufficient space could not be allocated. Otherwise, a pointer to the location of the constructed BER record is returned.

Example

See examples at the end of the document.

�
SearchResponse()

Synopsis

#include "zapi.h"

SEARCH_RESPONSE *SearchResponse(CHAR *response);

Function

Processes a Z39.50 SearchResponse.

Returns

A pointer to a SEARCH_RESPONSE structure, or a NULL if unable to process the response. If NULL, a call to WhatKindOfResponse() will return a value which should indicate why SearchResponse() failed. If the search status is non-zero, there may be an error_code and possibly an error_msg. If there is an error_msg, it must be free'd. The structure should be free'd.

Notes

All values in the SEARCH_RESPONSE structure are as described in the Z39.50 standard.

Example

See examples at the end of the document.

�
PresentRequest()

Synopsis

#include "zapi.h"

CHAR *PresentRequest(long referenceId, char *resultSetName,

	long resultSetStartPoint, long numberOfRecordsRequested,

	char *ElementSetNames, CHAR *preferredRecordSyntax);

Function

Creates a Z39.50 PresentRequest.

Returns

NULL if sufficient space could not be allocated. Otherwise, a pointer to the location of the constructed BER record is returned.

Notes

The names MARC_SYNTAX, SIMPLETEXT_SYNTAX and OCLC_BER_SYNTAX are defined in zapi.h and can be used with preferredRecordSyntax.

Example

See examples at the end of the document.

�
PresentResponse()

Synopsis

#include "zapi.h"

PRESENT_RESPONSE *PresentResponse(CHAR *response);

Function

Processes a Z39.50 PresentResponse.

Returns

A pointer to a PRESENT_RESPONSE structure, or a NULL if unable to process the response. If NULL, a call to WhatKindOfResponse() will return a value which should indicate why PresentResponse() failed. The structure should be free'd.

Notes

All values in the PRESENT_RESPONSE structure are as described in the Z39.50 standard. A structure to hold the returned records (named records) is also in the PRESENT_RESPONSE. It is an array of pointers to structures that each contain a pointer to a single record. You should be sure to free each of the records and the records structure when done with the PRESENT_RESPONSE.

Example

See examples at the end of the document.

�
ScanRequest()

Synopsis

#include "zapi.h"

CHAR *ScanRequest(long referenceId, char *databaseName, char *term,

	int stepSize, int numberOfTermsRequested,

	int referredPositionInResponse);

Function

Creates a Z39.50 ScanRequest.

Returns

NULL if sufficient space could not be allocated. Otherwise, a pointer to the location of the constructed BER record is returned.

Notes

The term is constructed the same as a term in a query in a SearchRequest. It can have both a USE attribute and a STRUCTURE attribute.

Example

See examples at the end of the document.

�
ScanResponse()

Synopsis

#include "zapi.h"

SCAN_RESPONSE *ScanResponse(CHAR *response);

Function

Processes a Z39.50 ScanResponse.

Returns

A pointer to a SCAN_RESPONSE structure, or a NULL if unable to process the response. If NULL, a call to WhatKindOfResponse() will return a value which should indicate why ScanResponse() failed. The structure should be free'd.

Notes

All values in the SCAN_RESPONSE structure are as described in the Z39.50 standard. A structure to hold pointers to the returned terms (named terms) is also in the SCAN_RESPONSE. Parallel to the terms array is a postings array. It contains the count of documents associated with each term in the terms array. You should be sure to free terms and postings arrays and each of the terms pointed to in the terms structure, when done with the SCAN_RESPONSE.

Example

See examples at the end of the document.

�
WhatKindOfResponse()

Synopsis

#include "zapi.h"

IRP_type WhatKindOfResponse(CHAR *response);

Function

Identifies the type of a Z39.50 response.

Returns

The type of the IRP response.

Notes

Besides identifying known types of IRP responses, WhatKindOfResponse() will also indicate if the response is not a BER record or an unknown IRP response type.

Example

See examples at the end of the document.

�
Z3950_Response()

Synopsis

#include "zapi.h"

Z3950_RESPONSE *Z3950_Response(CHAR *response);

Function

Processes a Z39.50 response.

Returns

A pointer to an Z3950_RESPONSE structure. The structure should be free'd.

Notes

If the type of the response if not BER or an unknown IRP response, then the return value will be NULL. Otherwise, the return value can be cast to a pointer to the appropriate type of response structure.

Example

See examples at the end of the document.

�
IRP_Logging()

Synopsis

#include "zapi.h"

void *IRP_Logging(int flag);

Function

Enable and disable run-time diagnostics.

Returns

Nothing.

Notes

This routine opens a file named irp.log in the current directory. A flag of 1 (TRUE) enables logging and a flag of 0 (FALSE) disables logging. Logging can be repeatedly enabled and disabled. A special value for flag of 2 is the signal that hex_dir() style formatted dumps of the input and output messages are requested. A special value for flag of 666 is the signal that the logging file should be closed. You should call IRP_Logging(666) before stopping your program, if you have ever enabled logging.

Example

See examples at the end of the document.

�
zapi.h

/***

* OCLC, Inc.

*

* OCLC proprietry information: the enclosed materials contain

* proprietry information of OCLC Online Computer Library Center, Inc.

* and shall not be disclosed in whole or in part to any third party

* or used by any person for any purpose, without written consent of

* OCLC, Inc. Duplication of any portion of these materials shall

* include this legend.

***/

#ifndef ZAPI_H

#define ZAPI_H

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

#define MARC_SYNTAX "1.2.840.10003.5.10"

#define SIMPLETEXT_SYNTAX "1.2.840.10003.5.101"

#define OPAC_SYNTAX "1.2.840.10003.5.102"

#define OCLC_BER_SYNTAX "1.2.840.10003.5.1000.17.1"

#define OCLC_USERINFORMATION_1 "1.2.840.10003.10.1000.17.1"

typedef struct

{

	long referenceId;

	char *options;

	long preferredMessageSize;

	long maximumRecordSize;

	int result;

 char *MessageOfTheDay;

 int NumDBs;

 char **DBList;

 int failureCode;

} INIT_RESPONSE;

typedef struct

{

	 long len;

	 CHAR *record;

} IRP_RECORD;

typedef struct

{

	 long referenceId;

	 int numberOfRecordsReturned;

	 long nextResultSetPosition;

	 long presentStatus;

	 long error_code;

	 char *error_msg;

	 char recordSyntax[50];

	 IRP_RECORD *records;

} PRESENT_RESPONSE;

typedef struct

{

	 long referenceId;

	 long resultCount;

	 int searchStatus;

	 long resultSetStatus;

	 long error_code;

	 char *error_msg;

 PRESENT_RESPONSE PresentResponse;

} SEARCH_RESPONSE;

typedef struct

{

	 long referenceId;

	 long numberOfEntriesReturned;

	 long scanStatus;

	 long error_code;

	 char *error_msg;

	 char **terms;

	 long *postings;

} SCAN_RESPONSE;

enum IRP_type

{

	 not_BER,

	 IRP_unknown,

	 IRP_init,

	 IRP_search,

	 IRP_present,

	 IRP_scan,

 IRP_docorder_price,

 IRP_docorder

};

typedef struct

{

	 enum IRP_type irp_type;

	 CHAR *Z3950_Response; /* cast to appropriate struct */

} Z3950_RESPONSE; /* depending on irp_type */

void IRP_Logging(int flag);

CHAR *InitRequest(long referenceId, char *options,

 long preferredMessageSize, long maximumRecordSize,

 char *id, char *password, char *newpassword,

 DATA_DIR *userInformationField);

INIT_RESPONSE *InitResponse(CHAR *response);

INIT_RESPONSE *InitResponse2(DATA_DIR *dir);

CHAR *SearchRequest(long referenceId, long smallSetUpperBound,

 long largeSetLowerBound, long mediumSetPresentNumber,

 int replaceIndicator, char *resultSetName,

 char *databaseNames, char *smallSetElementSetNames,

 char *mediumSetElementSetNames, char *preferredRecordSyntax,

 char *query, long query_type);

SEARCH_RESPONSE *SearchResponse(CHAR *response);

SEARCH_RESPONSE *SearchResponse2(DATA_DIR *dir);

CHAR *PresentRequest(long referenceId, char *resultSetName,

 long resultSetStartPoint, long numberOfRecordsRequested,

 char *ElementSetNames, char *preferredRecordSyntax);

PRESENT_RESPONSE *PresentResponse(CHAR *response);

PRESENT_RESPONSE *PresentResponse2(DATA_DIR *dir);

CHAR *ScanRequest(long referenceId, char *databaseName,

 char *term, int stepSize, int numberOfTermsRequested,

 int preferredPositionInResponse);

SCAN_RESPONSE *ScanResponse(CHAR *response);

SCAN_RESPONSE *ScanResponse2(DATA_DIR *dir);

enum IRP_type WhatKindOfResponse(CHAR *response);

Z3950_RESPONSE *Z3950_Response(CHAR *response);

Z3950_RESPONSE *Z3950_Response2(DATA_DIR *dir);

#endif

�
Example

This example assumes the existance of some user provided routines. IRP_Connect() and IRP_Disconnect() are used to make a break the tcp/ip connect to the remote server. doirp() sends a BER encoded request, frees the encoded request passed to it and waits for the BER encoded response.

This example also uses OCLC's BER utilities. These utilities are available via anonymous ftp at ftp.rsch.oclc.org and are in the pub/BER_utilities directory.

�
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "localtcp.h" /* this is where IRP_Connect(), IRP_Disconnect() and

				doirp() are defined */

#include "berutil.h"

#include "zapi.h"

void main()

{

	CHAR						*irp_request, *Z3950_Response;

	DATA_DIR 				*dir, *irp_resp;

	INIT_RESPONSE 		*init_response;

	int							CanDoScan=FALSE, I, MustUseDefault=FALSE;

	long						len, nRecs;

	PRESENT_RESPONSE	*present_response;

	SCAN_RESPONSE		*scan_response;

	SEARCH_RESPONSE	*search_response;

	if(!IRP_Connect("tikal.dev.oclc.org", 210))

	{

		printf("unable to connect to server\n");

		exit(1);

	}

	/* send and process the InitRequest */

	irp_request=InitRequest(0, "yynnnnny", 32767, 32767, NULL,

		NULL, NULL, &len);

	Z3950_Response = do_irp(irp_request);

	if(!Z3950_Response)

	{

		printf("unable to send init request\n");

		exit(2);

	}

	init_response=InitResponse(Z3950_Response);

	if(!init_response || !init_response->result)

	{

		printf("init failed\n");

		hex_dir(irp_resp, 0);

		exit(3);

	}

	if(init_response->userInformation)

		puts(init_response->userInformation);

	if(strlen(init_response->options)>7 && init_response->options[7]=='y')

		CanDoScan=TRUE;

	else

		printf("This server doesn't support the Scan Facility\n");

	free((char*)init_response);

	free((char*)Z3950_Response);

	/* send and process a ScanRequest on the term "dog"*/

	if(CanDoScan)

	{

		irp_request=ScanRequest(0, "worldcat", "dog", 1, 20, 10);

		Z3950_Response = do_irp(irp_request);

		scan_response=ScanResponse(Z3950_Response);

		if(!scan_response)

		{

			printf("Did not get an IRP_scanResponse!\n");

			exit(4);

		}

		if(scan_response->scanStatus==0)

			printf("Scan Successful! :-)\n");

		else

			printf("Scan Failed! :-(\nstatus=%ld\n",

				scan_response->scanStatus);

		for(i=0; i<scan_response->numberOfEntriesReturned; i++)

		{

			printf("'%s' %ld\n", scan_response->terms[i],

				scan_response->postings[i]);

			free(scan_response->terms[i]);

		}

		free((char*)scan_response->terms);

		free((char*)scan_response->postings);

		free((char*)scan_response);

		free((char*)Z3950_Response);

	}

	/* send and process a SearchRequest */

	irp_request=SearchRequest(0, TRUE,

		MustUseDefault ? "default" : "Search 1", "worldcat", "dog/21", 1);

	Z3950_Response = do_irp(irp_request);

	search_response=SearchResponse(Z3950_Response);

	if(!search_response)

	{

		printf("Did not get an IRP_searchResponse!\n");

		exit(5);

	}

	printf("%ld records found.\n", search_response->resultCount);

	if(search_response->searchStatus)

		printf("Search Successful! :-)\n");

	else

	{

		printf("Search Failed! :-(\n");

		printf("Error_code=%ld, message='%s'\n",

			search_response->error_code,

			search_response->error_msg?

			search_response->error_msg:"None provided");

		if(search_response->error_msg)

			free(search_response->error_msg);

		if(search_response->error_code==22)

		{

			puts("Must use ResultSetName of \"default\"");

			puts("Resetting internal flags; please try again");

			MustUseDefault=TRUE;

		}

	}

	free((char*)search_response);

	free((char*)Z3950_Response);

	/* send and process a PresentRequest for 5 full SUTRS records */

	irp_request=PresentRequest(0, "Search 1", 1, 5, "f",

		SIMPLETEXT_SYNTAX);

	Z3950_Response = do_irp(irp_request);

	present_response=PresentResponse(Z3950_Response);

	if(!present_response)

	{

		printf("Did not get an IRP_presentResponse!\n");

		exit(6);

	}

	nRecs=present_response->numberOfRecordsReturned;

	printf("%ld records returned\n", nRecs);

	switch(present_response->presentStatus)

	{

		case 0:

			printf("Present successful\n");

			break;

		case 1:

		case 2:

		case 3:

		case 4:

			printf("Partial results returned\n");

			break;

		case 5:

			printf("Present failed\n");

			break;

	}

	printf("recordSyntax='%s'\n", present_response->recordSyntax);

	for(i=0; i<nRecs; i++)

		if(present_response->records[i].record)

		{

			char *end, *ptr, *t;

			DATA_DIR *temp=dalloc(3);

			bld_dir(present_response->records[i].record, temp);

			ptr=temp->ptr.data;

			end=ptr+temp->count;

			dfree(temp);

			while(ptr<end)

			{

				for(t=ptr; t<end; t++)

					if(*t=='\n')

					{

						*t='\0';

						break;

					}

				puts(ptr);

				ptr=t+1;

			}

			free(present_response->records[i].record);

		}

	if(present_response->error_code)

	{

		printf("Error_code=%ld, message='%s'\n",

			present_response->error_code,

			present_response->error_msg ?

			present_response->error_msg:"None provided");

		if(present_response->error_msg)

			free(present_response->error_msg);

	}

	free((char*)present_response);

	free((char*)Z3950_Response);

}

The OCLC Z39.50 Client API Software Library

	Version 1.5,	9/8/95	Page �

